--- EXPERIMENT NOTES




 --- EXPERIMENT PROPERTIES

#Mon Jul 16 01:58:44 WEST 2018
codeml.models=0 1 2 3 7 8
mrbayes.mpich=
mrbayes.ngen=1000000
tcoffee.alignMethod=MUSCLE
tcoffee.params=
tcoffee.maxSeqs=0
codeml.bin=codeml
mrbayes.tburnin=2500
codeml.dir=
input.sequences=
mrbayes.pburnin=2500
mrbayes.bin=mb_adops
tcoffee.bin=t_coffee_ADOPS
mrbayes.dir=/usr/bin/
tcoffee.dir=
tcoffee.minScore=3
input.fasta=/opt/ADOPS1/DNG_N3/prM_5/input.fasta
input.names=
mrbayes.params=
codeml.params=



 --- PSRF SUMMARY

      Estimated marginal likelihoods for runs sampled in files
"/opt/ADOPS1/DNG_N3/prM_5/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run1.p" and "/opt/ADOPS1/DNG_N3/prM_5/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run2.p":
(Use the harmonic mean for Bayes factor comparisons of models)

(Values are saved to the file /opt/ADOPS1/DNG_N3/prM_5/batch/allfiles/mrbayes/input.fasta.fasta.mrb.lstat)

Run   Arithmetic mean   Harmonic mean
--------------------------------------
1      -3991.97         -4039.96
2      -3993.39         -4036.76
--------------------------------------
TOTAL    -3992.45         -4039.30
--------------------------------------


Model parameter summaries over the runs sampled in files
"/opt/ADOPS1/DNG_N3/prM_5/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run1.p" and "/opt/ADOPS1/DNG_N3/prM_5/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run2.p":
Summaries are based on a total of 3002 samples from 2 runs.
Each run produced 2001 samples of which 1501 samples were included.
Parameter summaries saved to file "/opt/ADOPS1/DNG_N3/prM_5/batch/allfiles/mrbayes/input.fasta.fasta.mrb.pstat".

95% HPD Interval
--------------------
Parameter         Mean      Variance     Lower       Upper       Median    min ESS*  avg ESS    PSRF+
------------------------------------------------------------------------------------------------------
TL{all}         6.987316    0.293178    5.996340    8.133070    6.986983    786.02    825.63    1.000
r(A<->C){all}   0.034580    0.000082    0.017162    0.051414    0.034013    749.78    750.81    1.000
r(A<->G){all}   0.197104    0.000526    0.156115    0.244059    0.196366    491.64    522.21    1.000
r(A<->T){all}   0.071971    0.000163    0.047081    0.096817    0.071476    755.07    804.63    1.000
r(C<->G){all}   0.019637    0.000053    0.006410    0.033985    0.019142    564.59    658.58    1.003
r(C<->T){all}   0.641973    0.000819    0.587056    0.699631    0.641654    436.67    486.98    1.000
r(G<->T){all}   0.034735    0.000105    0.016579    0.057009    0.034069    527.52    553.41    1.000
pi(A){all}      0.296550    0.000213    0.267389    0.324539    0.296269    714.66    788.27    1.000
pi(C){all}      0.252154    0.000176    0.225158    0.276075    0.252478    571.56    703.95    1.000
pi(G){all}      0.249473    0.000206    0.219261    0.274879    0.249578    776.93    823.09    1.001
pi(T){all}      0.201824    0.000137    0.177387    0.222604    0.201756    685.32    696.12    1.003
alpha{1,2}      0.187433    0.000231    0.158756    0.217464    0.186088   1273.63   1285.00    1.000
alpha{3}        3.302929    0.490587    2.062023    4.679707    3.216638   1398.69   1435.74    1.001
pinvar{all}     0.045740    0.000794    0.000274    0.097667    0.041844   1106.30   1218.31    1.001
------------------------------------------------------------------------------------------------------
* Convergence diagnostic (ESS = Estimated Sample Size); min and avg values
correspond to minimal and average ESS among runs.
ESS value below 100 may indicate that the parameter is undersampled.
+ Convergence diagnostic (PSRF = Potential Scale Reduction Factor; Gelman
and Rubin, 1992) should approach 1.0 as runs converge.


Setting sumt conformat to Simple



 --- CODEML SUMMARY

Model 1: NearlyNeutral	-3815.847278
Model 2: PositiveSelection	-3815.847278
Model 0: one-ratio	-3821.791197
Model 3: discrete	-3778.722686
Model 7: beta	-3779.14827
Model 8: beta&w>1	-3779.14993


Model 0 vs 1	11.887837999999647

Model 2 vs 1	0.0

Model 8 vs 7	0.003319999999803258