--- EXPERIMENT NOTES




 --- EXPERIMENT PROPERTIES

#Tue Jul 10 20:52:26 WEST 2018
codeml.models=0 1 2 3 7 8
mrbayes.mpich=
mrbayes.ngen=1000000
tcoffee.alignMethod=MUSCLE
tcoffee.params=
tcoffee.maxSeqs=0
codeml.bin=codeml
mrbayes.tburnin=2500
codeml.dir=
input.sequences=
mrbayes.pburnin=2500
mrbayes.bin=mb_adops
tcoffee.bin=t_coffee_ADOPS
mrbayes.dir=/usr/bin/
tcoffee.dir=
tcoffee.minScore=3
input.fasta=/opt/ADOPS1/DNG_N3/NS4A_2/input.fasta
input.names=
mrbayes.params=
codeml.params=



 --- PSRF SUMMARY

      Estimated marginal likelihoods for runs sampled in files
"/opt/ADOPS1/DNG_N3/NS4A_2/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run1.p" and "/opt/ADOPS1/DNG_N3/NS4A_2/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run2.p":
(Use the harmonic mean for Bayes factor comparisons of models)

(Values are saved to the file /opt/ADOPS1/DNG_N3/NS4A_2/batch/allfiles/mrbayes/input.fasta.fasta.mrb.lstat)

Run   Arithmetic mean   Harmonic mean
--------------------------------------
1      -3514.85         -3568.82
2      -3515.10         -3566.29
--------------------------------------
TOTAL    -3514.96         -3568.20
--------------------------------------


Model parameter summaries over the runs sampled in files
"/opt/ADOPS1/DNG_N3/NS4A_2/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run1.p" and "/opt/ADOPS1/DNG_N3/NS4A_2/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run2.p":
Summaries are based on a total of 3002 samples from 2 runs.
Each run produced 2001 samples of which 1501 samples were included.
Parameter summaries saved to file "/opt/ADOPS1/DNG_N3/NS4A_2/batch/allfiles/mrbayes/input.fasta.fasta.mrb.pstat".

95% HPD Interval
--------------------
Parameter         Mean      Variance     Lower       Upper       Median    min ESS*  avg ESS    PSRF+
------------------------------------------------------------------------------------------------------
TL{all}         8.502252    0.430295    7.283136    9.786245    8.463103    783.73    855.84    1.000
r(A<->C){all}   0.035534    0.000089    0.017370    0.054034    0.034741    719.26    803.68    1.000
r(A<->G){all}   0.209074    0.000554    0.165199    0.256201    0.208458    524.21    564.74    1.001
r(A<->T){all}   0.064554    0.000155    0.042386    0.090068    0.063958    765.11    807.97    1.000
r(C<->G){all}   0.026491    0.000079    0.010935    0.044564    0.025669    536.10    701.20    1.000
r(C<->T){all}   0.629481    0.000885    0.571264    0.687423    0.630244    414.68    507.09    1.002
r(G<->T){all}   0.034865    0.000123    0.013625    0.056688    0.033967    733.71    802.13    1.001
pi(A){all}      0.310916    0.000264    0.280143    0.343159    0.310535    762.52    857.94    1.001
pi(C){all}      0.248114    0.000226    0.217366    0.275306    0.247914    709.70    759.03    1.000
pi(G){all}      0.231606    0.000213    0.204670    0.260616    0.231292    671.13    702.97    1.000
pi(T){all}      0.209364    0.000168    0.183708    0.233362    0.208968    626.78    672.03    1.001
alpha{1,2}      0.219295    0.000383    0.183301    0.257016    0.217270    997.29   1249.15    1.000
alpha{3}        4.690126    1.071187    2.835821    6.704374    4.561190   1248.30   1349.91    1.000
pinvar{all}     0.037029    0.000630    0.000052    0.084994    0.033113   1347.51   1375.61    1.000
------------------------------------------------------------------------------------------------------
* Convergence diagnostic (ESS = Estimated Sample Size); min and avg values
correspond to minimal and average ESS among runs.
ESS value below 100 may indicate that the parameter is undersampled.
+ Convergence diagnostic (PSRF = Potential Scale Reduction Factor; Gelman
and Rubin, 1992) should approach 1.0 as runs converge.


Setting sumt conformat to Simple



 --- CODEML SUMMARY

Model 1: NearlyNeutral	-3197.53676
Model 2: PositiveSelection	-3197.53676
Model 0: one-ratio	-3206.942355
Model 3: discrete	-3171.043127
Model 7: beta	-3173.693609
Model 8: beta&w>1	-3173.694783


Model 0 vs 1	18.81119000000035

Model 2 vs 1	0.0

Model 8 vs 7	0.0023479999999835854