--- EXPERIMENT NOTES




 --- EXPERIMENT PROPERTIES

#Thu May 17 00:08:26 WEST 2018
codeml.models=0 1 2 3 7 8
mrbayes.mpich=
mrbayes.ngen=1000000
tcoffee.alignMethod=MUSCLE
tcoffee.params=
tcoffee.maxSeqs=0
codeml.bin=codeml
mrbayes.tburnin=2500
codeml.dir=
input.sequences=
mrbayes.pburnin=2500
mrbayes.bin=mb_adops
tcoffee.bin=t_coffee_ADOPS
mrbayes.dir=/usr/bin/
tcoffee.dir=
tcoffee.minScore=3
input.fasta=/opt/ADOPS1/DNG_N2/NS3_4/input.fasta
input.names=
mrbayes.params=
codeml.params=



 --- PSRF SUMMARY

      Estimated marginal likelihoods for runs sampled in files
"/opt/ADOPS1/DNG_N2/NS3_4/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run1.p" and "/opt/ADOPS1/DNG_N2/NS3_4/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run2.p":
(Use the harmonic mean for Bayes factor comparisons of models)

(Values are saved to the file /opt/ADOPS1/DNG_N2/NS3_4/batch/allfiles/mrbayes/input.fasta.fasta.mrb.lstat)

Run   Arithmetic mean   Harmonic mean
--------------------------------------
1     -14770.56        -14813.13
2     -14775.50        -14813.15
--------------------------------------
TOTAL   -14771.25        -14813.14
--------------------------------------


Model parameter summaries over the runs sampled in files
"/opt/ADOPS1/DNG_N2/NS3_4/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run1.p" and "/opt/ADOPS1/DNG_N2/NS3_4/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run2.p":
Summaries are based on a total of 3002 samples from 2 runs.
Each run produced 2001 samples of which 1501 samples were included.
Parameter summaries saved to file "/opt/ADOPS1/DNG_N2/NS3_4/batch/allfiles/mrbayes/input.fasta.fasta.mrb.pstat".

95% HPD Interval
--------------------
Parameter         Mean      Variance     Lower       Upper       Median    min ESS*  avg ESS    PSRF+
------------------------------------------------------------------------------------------------------
TL{all}         8.185872    0.189091    7.347523    9.071210    8.177417    664.08    668.67    1.002
r(A<->C){all}   0.034804    0.000017    0.026693    0.042846    0.034609    764.15    765.21    1.001
r(A<->G){all}   0.209424    0.000142    0.186555    0.233039    0.208763    490.19    496.38    1.000
r(A<->T){all}   0.038119    0.000019    0.029949    0.046667    0.038002    505.75    615.27    1.000
r(C<->G){all}   0.020329    0.000016    0.013235    0.028750    0.020111    865.41   1010.98    1.001
r(C<->T){all}   0.673086    0.000215    0.644184    0.700414    0.673078    466.53    491.78    1.000
r(G<->T){all}   0.024238    0.000020    0.015736    0.032874    0.024139    598.34    752.62    1.000
pi(A){all}      0.359847    0.000065    0.345068    0.376935    0.359777    806.67    873.95    1.000
pi(C){all}      0.217959    0.000041    0.206173    0.230629    0.217880    666.69    769.62    1.000
pi(G){all}      0.225849    0.000047    0.212260    0.239272    0.225878    758.21    773.07    1.002
pi(T){all}      0.196344    0.000035    0.184556    0.207669    0.196175    756.06    802.74    1.001
alpha{1,2}      0.158008    0.000048    0.145132    0.171703    0.157809   1198.09   1286.66    1.000
alpha{3}        6.080959    0.947238    4.217589    7.856650    6.008479   1203.76   1327.22    1.000
pinvar{all}     0.118662    0.000297    0.085221    0.150824    0.118414    966.86   1179.36    1.000
------------------------------------------------------------------------------------------------------
* Convergence diagnostic (ESS = Estimated Sample Size); min and avg values
correspond to minimal and average ESS among runs.
ESS value below 100 may indicate that the parameter is undersampled.
+ Convergence diagnostic (PSRF = Potential Scale Reduction Factor; Gelman
and Rubin, 1992) should approach 1.0 as runs converge.


Setting sumt conformat to Simple



 --- CODEML SUMMARY

Model 1: NearlyNeutral	-13989.780834
Model 2: PositiveSelection	-13989.780834
Model 0: one-ratio	-14020.409681
Model 3: discrete	-13832.709146
Model 7: beta	-13833.456417
Model 8: beta&w>1	-13831.724136


Model 0 vs 1	61.2576939999999

Model 2 vs 1	0.0

Model 8 vs 7	3.464561999997386