--- EXPERIMENT NOTES




 --- EXPERIMENT PROPERTIES

#Mon May 14 04:45:16 WEST 2018
codeml.models=0 1 2 3 7 8
mrbayes.mpich=
mrbayes.ngen=1000000
tcoffee.alignMethod=MUSCLE
tcoffee.params=
tcoffee.maxSeqs=0
codeml.bin=codeml
mrbayes.tburnin=2500
codeml.dir=
input.sequences=
mrbayes.pburnin=2500
mrbayes.bin=mb_adops
tcoffee.bin=t_coffee_ADOPS
mrbayes.dir=/usr/bin/
tcoffee.dir=
tcoffee.minScore=3
input.fasta=/opt/ADOPS1/DNG_N2/NS3_2/input.fasta
input.names=
mrbayes.params=
codeml.params=



 --- PSRF SUMMARY

      Estimated marginal likelihoods for runs sampled in files
"/opt/ADOPS1/DNG_N2/NS3_2/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run1.p" and "/opt/ADOPS1/DNG_N2/NS3_2/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run2.p":
(Use the harmonic mean for Bayes factor comparisons of models)

(Values are saved to the file /opt/ADOPS1/DNG_N2/NS3_2/batch/allfiles/mrbayes/input.fasta.fasta.mrb.lstat)

Run   Arithmetic mean   Harmonic mean
--------------------------------------
1     -13660.45        -13709.89
2     -13659.66        -13707.72
--------------------------------------
TOTAL   -13659.98        -13709.30
--------------------------------------


Model parameter summaries over the runs sampled in files
"/opt/ADOPS1/DNG_N2/NS3_2/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run1.p" and "/opt/ADOPS1/DNG_N2/NS3_2/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run2.p":
Summaries are based on a total of 3002 samples from 2 runs.
Each run produced 2001 samples of which 1501 samples were included.
Parameter summaries saved to file "/opt/ADOPS1/DNG_N2/NS3_2/batch/allfiles/mrbayes/input.fasta.fasta.mrb.pstat".

95% HPD Interval
--------------------
Parameter         Mean      Variance     Lower       Upper       Median    min ESS*  avg ESS    PSRF+
------------------------------------------------------------------------------------------------------
TL{all}         8.208054    0.192982    7.331877    9.055399    8.201090    545.44    621.96    1.000
r(A<->C){all}   0.041376    0.000023    0.032026    0.050851    0.041246    720.60    762.69    1.000
r(A<->G){all}   0.199229    0.000166    0.173687    0.223705    0.199033    501.24    515.46    1.000
r(A<->T){all}   0.040360    0.000025    0.030094    0.049865    0.040282    807.72    948.64    1.000
r(C<->G){all}   0.018738    0.000016    0.011174    0.026508    0.018515    654.23    741.66    1.000
r(C<->T){all}   0.680316    0.000250    0.649589    0.710048    0.680416    496.25    499.12    1.000
r(G<->T){all}   0.019980    0.000022    0.011280    0.029092    0.019600    381.76    558.85    1.000
pi(A){all}      0.360903    0.000064    0.345622    0.376486    0.360786    813.98    856.58    1.000
pi(C){all}      0.214613    0.000040    0.201741    0.226515    0.214405    715.01    780.53    1.000
pi(G){all}      0.228870    0.000051    0.215093    0.242714    0.228588    692.03    715.18    1.000
pi(T){all}      0.195614    0.000038    0.183886    0.207695    0.195619    701.24    759.73    1.000
alpha{1,2}      0.148950    0.000041    0.136246    0.161397    0.148650   1178.44   1225.41    1.000
alpha{3}        4.958261    0.643753    3.520045    6.583744    4.871818   1261.19   1381.09    1.000
pinvar{all}     0.109642    0.000281    0.077311    0.142453    0.109399   1200.24   1310.82    1.000
------------------------------------------------------------------------------------------------------
* Convergence diagnostic (ESS = Estimated Sample Size); min and avg values
correspond to minimal and average ESS among runs.
ESS value below 100 may indicate that the parameter is undersampled.
+ Convergence diagnostic (PSRF = Potential Scale Reduction Factor; Gelman
and Rubin, 1992) should approach 1.0 as runs converge.


Setting sumt conformat to Simple



 --- CODEML SUMMARY

Model 1: NearlyNeutral	-11982.516811
Model 2: PositiveSelection	-11982.516812
Model 0: one-ratio	-12004.177286
Model 3: discrete	-11843.511779
Model 7: beta	-11843.965992
Model 8: beta&w>1	-11843.969252


Model 0 vs 1	43.320950000001176

Model 2 vs 1	2.0000006770715117E-6

Model 8 vs 7	0.006520000002637971