--- EXPERIMENT NOTES --- EXPERIMENT PROPERTIES #Mon May 14 04:45:16 WEST 2018 codeml.models=0 1 2 3 7 8 mrbayes.mpich= mrbayes.ngen=1000000 tcoffee.alignMethod=MUSCLE tcoffee.params= tcoffee.maxSeqs=0 codeml.bin=codeml mrbayes.tburnin=2500 codeml.dir= input.sequences= mrbayes.pburnin=2500 mrbayes.bin=mb_adops tcoffee.bin=t_coffee_ADOPS mrbayes.dir=/usr/bin/ tcoffee.dir= tcoffee.minScore=3 input.fasta=/opt/ADOPS1/DNG_N2/NS3_2/input.fasta input.names= mrbayes.params= codeml.params= --- PSRF SUMMARY Estimated marginal likelihoods for runs sampled in files "/opt/ADOPS1/DNG_N2/NS3_2/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run1.p" and "/opt/ADOPS1/DNG_N2/NS3_2/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run2.p": (Use the harmonic mean for Bayes factor comparisons of models) (Values are saved to the file /opt/ADOPS1/DNG_N2/NS3_2/batch/allfiles/mrbayes/input.fasta.fasta.mrb.lstat) Run Arithmetic mean Harmonic mean -------------------------------------- 1 -13660.45 -13709.89 2 -13659.66 -13707.72 -------------------------------------- TOTAL -13659.98 -13709.30 -------------------------------------- Model parameter summaries over the runs sampled in files "/opt/ADOPS1/DNG_N2/NS3_2/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run1.p" and "/opt/ADOPS1/DNG_N2/NS3_2/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run2.p": Summaries are based on a total of 3002 samples from 2 runs. Each run produced 2001 samples of which 1501 samples were included. Parameter summaries saved to file "/opt/ADOPS1/DNG_N2/NS3_2/batch/allfiles/mrbayes/input.fasta.fasta.mrb.pstat". 95% HPD Interval -------------------- Parameter Mean Variance Lower Upper Median min ESS* avg ESS PSRF+ ------------------------------------------------------------------------------------------------------ TL{all} 8.208054 0.192982 7.331877 9.055399 8.201090 545.44 621.96 1.000 r(A<->C){all} 0.041376 0.000023 0.032026 0.050851 0.041246 720.60 762.69 1.000 r(A<->G){all} 0.199229 0.000166 0.173687 0.223705 0.199033 501.24 515.46 1.000 r(A<->T){all} 0.040360 0.000025 0.030094 0.049865 0.040282 807.72 948.64 1.000 r(C<->G){all} 0.018738 0.000016 0.011174 0.026508 0.018515 654.23 741.66 1.000 r(C<->T){all} 0.680316 0.000250 0.649589 0.710048 0.680416 496.25 499.12 1.000 r(G<->T){all} 0.019980 0.000022 0.011280 0.029092 0.019600 381.76 558.85 1.000 pi(A){all} 0.360903 0.000064 0.345622 0.376486 0.360786 813.98 856.58 1.000 pi(C){all} 0.214613 0.000040 0.201741 0.226515 0.214405 715.01 780.53 1.000 pi(G){all} 0.228870 0.000051 0.215093 0.242714 0.228588 692.03 715.18 1.000 pi(T){all} 0.195614 0.000038 0.183886 0.207695 0.195619 701.24 759.73 1.000 alpha{1,2} 0.148950 0.000041 0.136246 0.161397 0.148650 1178.44 1225.41 1.000 alpha{3} 4.958261 0.643753 3.520045 6.583744 4.871818 1261.19 1381.09 1.000 pinvar{all} 0.109642 0.000281 0.077311 0.142453 0.109399 1200.24 1310.82 1.000 ------------------------------------------------------------------------------------------------------ * Convergence diagnostic (ESS = Estimated Sample Size); min and avg values correspond to minimal and average ESS among runs. ESS value below 100 may indicate that the parameter is undersampled. + Convergence diagnostic (PSRF = Potential Scale Reduction Factor; Gelman and Rubin, 1992) should approach 1.0 as runs converge. Setting sumt conformat to Simple --- CODEML SUMMARY Model 1: NearlyNeutral -11982.516811 Model 2: PositiveSelection -11982.516812 Model 0: one-ratio -12004.177286 Model 3: discrete -11843.511779 Model 7: beta -11843.965992 Model 8: beta&w>1 -11843.969252 Model 0 vs 1 43.320950000001176 Model 2 vs 1 2.0000006770715117E-6 Model 8 vs 7 0.006520000002637971