--- EXPERIMENT NOTES




 --- EXPERIMENT PROPERTIES

#Sun Apr 29 05:38:51 WEST 2018
codeml.models=0 1 2 3 7 8
mrbayes.mpich=
mrbayes.ngen=1000000
tcoffee.alignMethod=MUSCLE
tcoffee.params=
tcoffee.maxSeqs=0
codeml.bin=codeml
mrbayes.tburnin=2500
codeml.dir=
input.sequences=
mrbayes.pburnin=2500
mrbayes.bin=mb_adops
tcoffee.bin=t_coffee_ADOPS
mrbayes.dir=/usr/bin/
tcoffee.dir=
tcoffee.minScore=3
input.fasta=/opt/ADOPS1/DNG_N1/E_1/input.fasta
input.names=
mrbayes.params=
codeml.params=



 --- PSRF SUMMARY

      Estimated marginal likelihoods for runs sampled in files
"/opt/ADOPS1/DNG_N1/E_1/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run1.p" and "/opt/ADOPS1/DNG_N1/E_1/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run2.p":
(Use the harmonic mean for Bayes factor comparisons of models)

(Values are saved to the file /opt/ADOPS1/DNG_N1/E_1/batch/allfiles/mrbayes/input.fasta.fasta.mrb.lstat)

Run   Arithmetic mean   Harmonic mean
--------------------------------------
1     -12024.10        -12065.89
2     -12023.67        -12073.17
--------------------------------------
TOTAL   -12023.86        -12072.48
--------------------------------------


Model parameter summaries over the runs sampled in files
"/opt/ADOPS1/DNG_N1/E_1/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run1.p" and "/opt/ADOPS1/DNG_N1/E_1/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run2.p":
Summaries are based on a total of 3002 samples from 2 runs.
Each run produced 2001 samples of which 1501 samples were included.
Parameter summaries saved to file "/opt/ADOPS1/DNG_N1/E_1/batch/allfiles/mrbayes/input.fasta.fasta.mrb.pstat".

95% HPD Interval
--------------------
Parameter         Mean      Variance     Lower       Upper       Median    min ESS*  avg ESS    PSRF+
------------------------------------------------------------------------------------------------------
TL{all}         9.072763    0.299181    8.059762   10.178320    9.052256    639.02    661.22    1.003
r(A<->C){all}   0.043055    0.000029    0.033157    0.054150    0.042952    400.12    669.49    1.000
r(A<->G){all}   0.192167    0.000155    0.167520    0.216700    0.191629    617.01    654.02    1.000
r(A<->T){all}   0.043105    0.000032    0.032089    0.053404    0.042942    899.99    905.72    1.000
r(C<->G){all}   0.013017    0.000019    0.005066    0.021518    0.012666    901.48    913.97    1.000
r(C<->T){all}   0.677146    0.000247    0.645984    0.707100    0.678055    497.76    565.72    1.000
r(G<->T){all}   0.031511    0.000033    0.020119    0.042610    0.031145    868.42    879.63    1.000
pi(A){all}      0.345488    0.000072    0.329451    0.362842    0.345416    996.77   1019.42    1.000
pi(C){all}      0.216971    0.000049    0.204284    0.231514    0.216880   1021.12   1066.87    1.001
pi(G){all}      0.240442    0.000060    0.225561    0.255996    0.240444    822.11    968.19    1.000
pi(T){all}      0.197099    0.000044    0.184397    0.210145    0.197128    634.31    641.20    1.000
alpha{1,2}      0.202626    0.000117    0.181877    0.223807    0.202087   1172.25   1245.76    1.000
alpha{3}        5.170748    0.789481    3.575563    6.949871    5.082841   1387.90   1444.45    1.000
pinvar{all}     0.099602    0.000310    0.064680    0.132414    0.098983   1071.61   1165.32    1.002
------------------------------------------------------------------------------------------------------
* Convergence diagnostic (ESS = Estimated Sample Size); min and avg values
correspond to minimal and average ESS among runs.
ESS value below 100 may indicate that the parameter is undersampled.
+ Convergence diagnostic (PSRF = Potential Scale Reduction Factor; Gelman
and Rubin, 1992) should approach 1.0 as runs converge.


Setting sumt conformat to Simple



 --- CODEML SUMMARY

Model 1: NearlyNeutral	-11214.420128
Model 2: PositiveSelection	-11214.420127
Model 0: one-ratio	-11261.320842
Model 3: discrete	-11068.601597
Model 7: beta	-11071.594983
Model 8: beta&w>1	-11071.59836


Model 0 vs 1	93.80142799999885

Model 2 vs 1	2.0000006770715117E-6

Model 8 vs 7	0.0067539999981818255