--- EXPERIMENT NOTES




 --- EXPERIMENT PROPERTIES

#Thu Jun 14 22:09:19 WEST 2018
codeml.models=0 1 2 3 7 8
mrbayes.mpich=
mrbayes.ngen=1000000
tcoffee.alignMethod=MUSCLE
tcoffee.params=
tcoffee.maxSeqs=0
codeml.bin=codeml
mrbayes.tburnin=2500
codeml.dir=
input.sequences=
mrbayes.pburnin=2500
mrbayes.bin=mb_adops
tcoffee.bin=t_coffee_ADOPS
mrbayes.dir=/usr/bin/
tcoffee.dir=
tcoffee.minScore=3
input.fasta=/opt/ADOPS1/DNG_A2/NS4B_5/input.fasta
input.names=
mrbayes.params=
codeml.params=



 --- PSRF SUMMARY

      Estimated marginal likelihoods for runs sampled in files
"/opt/ADOPS1/DNG_A2/NS4B_5/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run1.p" and "/opt/ADOPS1/DNG_A2/NS4B_5/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run2.p":
(Use the harmonic mean for Bayes factor comparisons of models)

(Values are saved to the file /opt/ADOPS1/DNG_A2/NS4B_5/batch/allfiles/mrbayes/input.fasta.fasta.mrb.lstat)

Run   Arithmetic mean   Harmonic mean
--------------------------------------
1      -7467.41         -7516.01
2      -7464.50         -7512.42
--------------------------------------
TOTAL    -7465.14         -7515.34
--------------------------------------


Model parameter summaries over the runs sampled in files
"/opt/ADOPS1/DNG_A2/NS4B_5/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run1.p" and "/opt/ADOPS1/DNG_A2/NS4B_5/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run2.p":
Summaries are based on a total of 3002 samples from 2 runs.
Each run produced 2001 samples of which 1501 samples were included.
Parameter summaries saved to file "/opt/ADOPS1/DNG_A2/NS4B_5/batch/allfiles/mrbayes/input.fasta.fasta.mrb.pstat".

95% HPD Interval
--------------------
Parameter         Mean      Variance     Lower       Upper       Median    min ESS*  avg ESS    PSRF+
------------------------------------------------------------------------------------------------------
TL{all}         7.322376    0.186984    6.474480    8.135656    7.312701   1156.20   1190.93    1.001
r(A<->C){all}   0.037522    0.000038    0.025807    0.050273    0.037108    817.51    935.27    1.001
r(A<->G){all}   0.212940    0.000291    0.182118    0.247364    0.212442    442.91    495.36    1.006
r(A<->T){all}   0.058910    0.000052    0.045724    0.074349    0.058625    981.65   1013.67    1.000
r(C<->G){all}   0.038997    0.000051    0.025648    0.052632    0.038588    996.41   1001.54    1.000
r(C<->T){all}   0.606584    0.000474    0.565596    0.649776    0.606954    452.50    526.65    1.004
r(G<->T){all}   0.045046    0.000058    0.030282    0.059832    0.044817    790.03    850.12    1.000
pi(A){all}      0.330880    0.000144    0.307030    0.354097    0.330971    970.44   1026.17    1.001
pi(C){all}      0.234722    0.000104    0.215365    0.255045    0.234564    510.61    756.17    1.002
pi(G){all}      0.216845    0.000109    0.195929    0.236524    0.216808    662.35    770.36    1.001
pi(T){all}      0.217553    0.000089    0.200942    0.237516    0.217342    754.25    858.52    1.001
alpha{1,2}      0.228270    0.000245    0.199082    0.259336    0.227648   1032.85   1148.72    1.000
alpha{3}        5.266272    0.970359    3.563336    7.146472    5.153153   1249.02   1323.47    1.000
pinvar{all}     0.114020    0.000674    0.065888    0.165313    0.113516   1308.42   1320.39    1.000
------------------------------------------------------------------------------------------------------
* Convergence diagnostic (ESS = Estimated Sample Size); min and avg values
correspond to minimal and average ESS among runs.
ESS value below 100 may indicate that the parameter is undersampled.
+ Convergence diagnostic (PSRF = Potential Scale Reduction Factor; Gelman
and Rubin, 1992) should approach 1.0 as runs converge.


Setting sumt conformat to Simple



 --- CODEML SUMMARY

Model 1: NearlyNeutral	-6974.551581
Model 2: PositiveSelection	-6974.551584
Model 0: one-ratio	-7039.512939
Model 3: discrete	-6924.165023
Model 7: beta	-6930.365376
Model 8: beta&w>1	-6930.367753


Model 0 vs 1	129.92271600000095

Model 2 vs 1	6.000000212225132E-6

Model 8 vs 7	0.004754000001412351