--- EXPERIMENT NOTES




 --- EXPERIMENT PROPERTIES

#Thu Jun 07 12:07:48 WEST 2018
codeml.models=0 1 2 3 7 8
mrbayes.mpich=
mrbayes.ngen=1000000
tcoffee.alignMethod=MUSCLE
tcoffee.params=
tcoffee.maxSeqs=0
codeml.bin=codeml
mrbayes.tburnin=2500
codeml.dir=
input.sequences=
mrbayes.pburnin=2500
mrbayes.bin=mb_adops
tcoffee.bin=t_coffee_ADOPS
mrbayes.dir=/usr/bin/
tcoffee.dir=
tcoffee.minScore=3
input.fasta=/opt/ADOPS1/DNG_A2/NS4B_2/input.fasta
input.names=
mrbayes.params=
codeml.params=



 --- PSRF SUMMARY

      Estimated marginal likelihoods for runs sampled in files
"/opt/ADOPS1/DNG_A2/NS4B_2/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run1.p" and "/opt/ADOPS1/DNG_A2/NS4B_2/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run2.p":
(Use the harmonic mean for Bayes factor comparisons of models)

(Values are saved to the file /opt/ADOPS1/DNG_A2/NS4B_2/batch/allfiles/mrbayes/input.fasta.fasta.mrb.lstat)

Run   Arithmetic mean   Harmonic mean
--------------------------------------
1      -6687.27         -6726.53
2      -6685.55         -6728.19
--------------------------------------
TOTAL    -6686.08         -6727.67
--------------------------------------


Model parameter summaries over the runs sampled in files
"/opt/ADOPS1/DNG_A2/NS4B_2/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run1.p" and "/opt/ADOPS1/DNG_A2/NS4B_2/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run2.p":
Summaries are based on a total of 3002 samples from 2 runs.
Each run produced 2001 samples of which 1501 samples were included.
Parameter summaries saved to file "/opt/ADOPS1/DNG_A2/NS4B_2/batch/allfiles/mrbayes/input.fasta.fasta.mrb.pstat".

95% HPD Interval
--------------------
Parameter         Mean      Variance     Lower       Upper       Median    min ESS*  avg ESS    PSRF+
------------------------------------------------------------------------------------------------------
TL{all}         7.086022    0.213811    6.199199    8.010584    7.074923    651.47    881.26    1.000
r(A<->C){all}   0.036961    0.000040    0.025454    0.049481    0.036649    469.25    668.20    1.000
r(A<->G){all}   0.201010    0.000297    0.167568    0.234849    0.200502    551.16    605.53    1.001
r(A<->T){all}   0.052393    0.000056    0.038390    0.067101    0.051964   1028.31   1047.27    1.000
r(C<->G){all}   0.019979    0.000041    0.008337    0.032960    0.019511    737.69    771.31    1.000
r(C<->T){all}   0.645368    0.000476    0.602254    0.686042    0.645778    477.87    524.41    1.000
r(G<->T){all}   0.044290    0.000069    0.028035    0.060297    0.043864    718.08    730.42    1.000
pi(A){all}      0.328788    0.000147    0.305801    0.352838    0.328779    851.50    958.28    1.000
pi(C){all}      0.235477    0.000107    0.214297    0.254388    0.235141    927.78    940.59    1.000
pi(G){all}      0.215657    0.000115    0.195662    0.238395    0.215572    936.27    977.87    1.000
pi(T){all}      0.220077    0.000096    0.200625    0.238400    0.219783    708.04    866.55    1.000
alpha{1,2}      0.203683    0.000184    0.177078    0.230548    0.202838   1195.20   1260.96    1.001
alpha{3}        4.693651    0.793826    3.049390    6.475750    4.601192   1451.36   1476.18    1.000
pinvar{all}     0.105541    0.000803    0.050173    0.160505    0.104978   1031.83   1266.41    1.000
------------------------------------------------------------------------------------------------------
* Convergence diagnostic (ESS = Estimated Sample Size); min and avg values
correspond to minimal and average ESS among runs.
ESS value below 100 may indicate that the parameter is undersampled.
+ Convergence diagnostic (PSRF = Potential Scale Reduction Factor; Gelman
and Rubin, 1992) should approach 1.0 as runs converge.


Setting sumt conformat to Simple



 --- CODEML SUMMARY

Model 1: NearlyNeutral	-6262.79385
Model 2: PositiveSelection	-6262.793736
Model 0: one-ratio	-6309.157251
Model 3: discrete	-6197.49739
Model 7: beta	-6200.35853
Model 8: beta&w>1	-6200.364695


Model 0 vs 1	92.72680199999922

Model 2 vs 1	2.280000007885974E-4

Model 8 vs 7	0.012329999999565189