--- EXPERIMENT NOTES --- EXPERIMENT PROPERTIES #Thu Jun 07 12:07:48 WEST 2018 codeml.models=0 1 2 3 7 8 mrbayes.mpich= mrbayes.ngen=1000000 tcoffee.alignMethod=MUSCLE tcoffee.params= tcoffee.maxSeqs=0 codeml.bin=codeml mrbayes.tburnin=2500 codeml.dir= input.sequences= mrbayes.pburnin=2500 mrbayes.bin=mb_adops tcoffee.bin=t_coffee_ADOPS mrbayes.dir=/usr/bin/ tcoffee.dir= tcoffee.minScore=3 input.fasta=/opt/ADOPS1/DNG_A2/NS4B_2/input.fasta input.names= mrbayes.params= codeml.params= --- PSRF SUMMARY Estimated marginal likelihoods for runs sampled in files "/opt/ADOPS1/DNG_A2/NS4B_2/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run1.p" and "/opt/ADOPS1/DNG_A2/NS4B_2/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run2.p": (Use the harmonic mean for Bayes factor comparisons of models) (Values are saved to the file /opt/ADOPS1/DNG_A2/NS4B_2/batch/allfiles/mrbayes/input.fasta.fasta.mrb.lstat) Run Arithmetic mean Harmonic mean -------------------------------------- 1 -6687.27 -6726.53 2 -6685.55 -6728.19 -------------------------------------- TOTAL -6686.08 -6727.67 -------------------------------------- Model parameter summaries over the runs sampled in files "/opt/ADOPS1/DNG_A2/NS4B_2/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run1.p" and "/opt/ADOPS1/DNG_A2/NS4B_2/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run2.p": Summaries are based on a total of 3002 samples from 2 runs. Each run produced 2001 samples of which 1501 samples were included. Parameter summaries saved to file "/opt/ADOPS1/DNG_A2/NS4B_2/batch/allfiles/mrbayes/input.fasta.fasta.mrb.pstat". 95% HPD Interval -------------------- Parameter Mean Variance Lower Upper Median min ESS* avg ESS PSRF+ ------------------------------------------------------------------------------------------------------ TL{all} 7.086022 0.213811 6.199199 8.010584 7.074923 651.47 881.26 1.000 r(A<->C){all} 0.036961 0.000040 0.025454 0.049481 0.036649 469.25 668.20 1.000 r(A<->G){all} 0.201010 0.000297 0.167568 0.234849 0.200502 551.16 605.53 1.001 r(A<->T){all} 0.052393 0.000056 0.038390 0.067101 0.051964 1028.31 1047.27 1.000 r(C<->G){all} 0.019979 0.000041 0.008337 0.032960 0.019511 737.69 771.31 1.000 r(C<->T){all} 0.645368 0.000476 0.602254 0.686042 0.645778 477.87 524.41 1.000 r(G<->T){all} 0.044290 0.000069 0.028035 0.060297 0.043864 718.08 730.42 1.000 pi(A){all} 0.328788 0.000147 0.305801 0.352838 0.328779 851.50 958.28 1.000 pi(C){all} 0.235477 0.000107 0.214297 0.254388 0.235141 927.78 940.59 1.000 pi(G){all} 0.215657 0.000115 0.195662 0.238395 0.215572 936.27 977.87 1.000 pi(T){all} 0.220077 0.000096 0.200625 0.238400 0.219783 708.04 866.55 1.000 alpha{1,2} 0.203683 0.000184 0.177078 0.230548 0.202838 1195.20 1260.96 1.001 alpha{3} 4.693651 0.793826 3.049390 6.475750 4.601192 1451.36 1476.18 1.000 pinvar{all} 0.105541 0.000803 0.050173 0.160505 0.104978 1031.83 1266.41 1.000 ------------------------------------------------------------------------------------------------------ * Convergence diagnostic (ESS = Estimated Sample Size); min and avg values correspond to minimal and average ESS among runs. ESS value below 100 may indicate that the parameter is undersampled. + Convergence diagnostic (PSRF = Potential Scale Reduction Factor; Gelman and Rubin, 1992) should approach 1.0 as runs converge. Setting sumt conformat to Simple --- CODEML SUMMARY Model 1: NearlyNeutral -6262.79385 Model 2: PositiveSelection -6262.793736 Model 0: one-ratio -6309.157251 Model 3: discrete -6197.49739 Model 7: beta -6200.35853 Model 8: beta&w>1 -6200.364695 Model 0 vs 1 92.72680199999922 Model 2 vs 1 2.280000007885974E-4 Model 8 vs 7 0.012329999999565189