--- EXPERIMENT NOTES




 --- EXPERIMENT PROPERTIES

#Tue Oct 31 19:39:26 WET 2017
codeml.models=0 1 2 3 7 8
mrbayes.mpich=
mrbayes.ngen=1000000
tcoffee.alignMethod=CLUSTALW2
tcoffee.params=
tcoffee.maxSeqs=0
codeml.bin=codeml
mrbayes.tburnin=2500
codeml.dir=
input.sequences=
mrbayes.pburnin=2500
mrbayes.bin=mb_adops
tcoffee.bin=t_coffee_ADOPS
mrbayes.dir=/usr/bin/
tcoffee.dir=
tcoffee.minScore=3
input.fasta=
input.names=
mrbayes.params=
codeml.params=



 --- PSRF SUMMARY

      Estimated marginal likelihoods for runs sampled in files
"/opt/ADOPS1/Srevisao/S25_16Malus/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run1.p" and "/opt/ADOPS1/Srevisao/S25_16Malus/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run2.p":
(Use the harmonic mean for Bayes factor comparisons of models)

(Values are saved to the file /opt/ADOPS1/Srevisao/S25_16Malus/batch/allfiles/mrbayes/input.fasta.fasta.mrb.lstat)

Run   Arithmetic mean   Harmonic mean
--------------------------------------
1      -7352.52         -7368.80
2      -7352.63         -7369.41
--------------------------------------
TOTAL    -7352.57         -7369.15
--------------------------------------


Model parameter summaries over the runs sampled in files
"/opt/ADOPS1/Srevisao/S25_16Malus/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run1.p" and "/opt/ADOPS1/Srevisao/S25_16Malus/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run2.p":
Summaries are based on a total of 3002 samples from 2 runs.
Each run produced 2001 samples of which 1501 samples were included.
Parameter summaries saved to file "/opt/ADOPS1/Srevisao/S25_16Malus/batch/allfiles/mrbayes/input.fasta.fasta.mrb.pstat".

95% HPD Interval
--------------------
Parameter         Mean      Variance     Lower       Upper       Median    min ESS*  avg ESS    PSRF+
------------------------------------------------------------------------------------------------------
TL{all}         1.457809    0.003645    1.336056    1.573508    1.456345   1301.71   1379.25    1.000
r(A<->C){all}   0.118840    0.000147    0.094239    0.141521    0.118425    859.91    978.17    1.000
r(A<->G){all}   0.296597    0.000333    0.262339    0.333668    0.296637    625.05    626.98    1.000
r(A<->T){all}   0.078653    0.000062    0.063631    0.094143    0.078476   1052.01   1107.37    1.001
r(C<->G){all}   0.160694    0.000257    0.129745    0.192216    0.160162    927.15    935.23    1.001
r(C<->T){all}   0.253888    0.000298    0.218780    0.285554    0.253665    663.22    741.84    1.000
r(G<->T){all}   0.091328    0.000094    0.073371    0.110552    0.090952   1015.18   1078.91    1.000
pi(A){all}      0.301323    0.000122    0.279741    0.322571    0.301124    895.70    993.34    1.001
pi(C){all}      0.172120    0.000075    0.155323    0.188541    0.172025    998.35   1019.17    1.000
pi(G){all}      0.189606    0.000085    0.171004    0.207233    0.189603    922.96    960.89    1.000
pi(T){all}      0.336951    0.000133    0.315352    0.360317    0.337070    902.06    988.80    1.001
alpha{1,2}      0.773094    0.013186    0.572259    0.990089    0.756407   1289.92   1324.73    1.000
alpha{3}        1.608514    0.146529    0.973086    2.357180    1.548033   1225.01   1243.84    1.000
pinvar{all}     0.041895    0.001133    0.000002    0.106346    0.034077    976.28    997.27    1.000
------------------------------------------------------------------------------------------------------
* Convergence diagnostic (ESS = Estimated Sample Size); min and avg values
correspond to minimal and average ESS among runs.
ESS value below 100 may indicate that the parameter is undersampled.
+ Convergence diagnostic (PSRF = Potential Scale Reduction Factor; Gelman
and Rubin, 1992) should approach 1.0 as runs converge.


Setting sumt conformat to Simple



 --- CODEML SUMMARY

Model 1: NearlyNeutral	-1216.762323
Model 2: PositiveSelection	-1210.792323
Model 0: one-ratio	-1238.943124
Model 3: discrete	-1210.631394
Model 7: beta	-1218.019057
Model 8: beta&w>1	-1210.651417


Model 0 vs 1	44.36160199999995

Model 2 vs 1	11.940000000000055

Additional information for M1 vs M2:
Naive Empirical Bayes (NEB) analysis
Positively selected sites (*: P>95%; **: P>99%)
(amino acids refer to 1st sequence: S25_SFBB1)

            Pr(w>1)     post mean +- SE for w

     7 Q      0.867         2.709
    19 Q      0.981*        2.932
    20 Y      0.521         2.025
    22 Y      0.934         2.840
    26 A      0.791         2.559
    36 T      0.899         2.771
    37 T      0.702         2.382
    51 E      0.989*        2.949

Bayes Empirical Bayes (BEB) analysis (Yang, Wong & Nielsen 2005. Mol. Biol. Evol. 22:1107-1118)
Positively selected sites (*: P>95%; **: P>99%)
(amino acids refer to 1st sequence: S25_SFBB1)

            Pr(w>1)     post mean +- SE for w

     7 Q      0.868         2.790 +- 1.034
    19 Q      0.979*        3.041 +- 0.878
    20 Y      0.540         1.994 +- 1.043
    22 Y      0.918         2.868 +- 0.928
    26 A      0.775         2.520 +- 1.034
    36 T      0.888         2.809 +- 0.977
    37 T      0.670         2.234 +- 1.001
    51 E      0.987*        3.049 +- 0.854
    66 I      0.504         1.876 +- 0.957


Model 8 vs 7	14.735279999999875

Additional information for M7 vs M8:
Naive Empirical Bayes (NEB) analysis
Positively selected sites (*: P>95%; **: P>99%)
(amino acids refer to 1st sequence: S25_SFBB1)

            Pr(w>1)     post mean +- SE for w

     7 Q      0.913         2.493
    19 Q      0.987*        2.621
    20 Y      0.653         2.032
    22 Y      0.964*        2.582
    26 A      0.879         2.434
    36 T      0.940         2.539
    37 T      0.839         2.366
    51 E      0.994**       2.632
    66 I      0.672         2.075

Bayes Empirical Bayes (BEB) analysis (Yang, Wong & Nielsen 2005. Mol. Biol. Evol. 22:1107-1118)
Positively selected sites (*: P>95%; **: P>99%)
(amino acids refer to 1st sequence: S25_SFBB1)

            Pr(w>1)     post mean +- SE for w

     7 Q      0.941         2.495 +- 0.662
    19 Q      0.992**       2.589 +- 0.559
    20 Y      0.738         2.082 +- 0.866
    22 Y      0.976*        2.556 +- 0.583
    26 A      0.917         2.436 +- 0.680
    29 H      0.550         1.710 +- 0.927
    36 T      0.959*        2.526 +- 0.620
    37 T      0.883         2.354 +- 0.701
    51 E      0.996**       2.596 +- 0.548
    53 Y      0.529         1.669 +- 0.857
    66 I      0.762         2.113 +- 0.806