--- EXPERIMENT NOTES




 --- EXPERIMENT PROPERTIES

#Tue Nov 22 00:07:42 WET 2016
codeml.models=0 1 2 3 7 8
mrbayes.mpich=
mrbayes.ngen=1000000
tcoffee.alignMethod=CLUSTALW2
tcoffee.params=
tcoffee.maxSeqs=0
codeml.bin=codeml
mrbayes.tburnin=2500
codeml.dir=
input.sequences=
mrbayes.pburnin=2500
mrbayes.bin=mb_adops
tcoffee.bin=t_coffee_ADOPS
mrbayes.dir=/usr/bin/
tcoffee.dir=
tcoffee.minScore=3
input.fasta=/opt/ADOPS/3/AcCoAS-PA/input.fasta
input.names=
mrbayes.params=
codeml.params=



 --- PSRF SUMMARY

      Estimated marginal likelihoods for runs sampled in files
"/opt/ADOPS/3/AcCoAS-PA/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run1.p" and "/opt/ADOPS/3/AcCoAS-PA/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run2.p":
(Use the harmonic mean for Bayes factor comparisons of models)

(Values are saved to the file /opt/ADOPS/3/AcCoAS-PA/batch/allfiles/mrbayes/input.fasta.fasta.mrb.lstat)

Run   Arithmetic mean   Harmonic mean
--------------------------------------
1      -6712.69         -6728.83
2      -6712.91         -6727.89
--------------------------------------
TOTAL    -6712.80         -6728.47
--------------------------------------


Model parameter summaries over the runs sampled in files
"/opt/ADOPS/3/AcCoAS-PA/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run1.p" and "/opt/ADOPS/3/AcCoAS-PA/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run2.p":
Summaries are based on a total of 3002 samples from 2 runs.
Each run produced 2001 samples of which 1501 samples were included.
Parameter summaries saved to file "/opt/ADOPS/3/AcCoAS-PA/batch/allfiles/mrbayes/input.fasta.fasta.mrb.pstat".

95% HPD Interval
--------------------
Parameter         Mean      Variance     Lower       Upper       Median    min ESS*  avg ESS    PSRF+
------------------------------------------------------------------------------------------------------
TL{all}         1.122596    0.004176    0.995313    1.245475    1.119862   1487.16   1494.08    1.000
r(A<->C){all}   0.098746    0.000167    0.072965    0.122981    0.098283   1122.87   1236.74    1.000
r(A<->G){all}   0.246898    0.000511    0.204525    0.291708    0.246365   1045.45   1045.85    1.000
r(A<->T){all}   0.096965    0.000298    0.063176    0.130619    0.096562    787.90    816.24    1.000
r(C<->G){all}   0.055907    0.000060    0.041401    0.071458    0.055641    869.42    940.27    1.000
r(C<->T){all}   0.434596    0.000671    0.382403    0.484099    0.434153    884.39    917.87    1.000
r(G<->T){all}   0.066888    0.000119    0.046630    0.089000    0.066423   1082.22   1157.24    1.000
pi(A){all}      0.210251    0.000073    0.193807    0.227382    0.210330    710.92    951.33    1.000
pi(C){all}      0.292525    0.000089    0.273172    0.309998    0.292395    876.28   1053.20    1.000
pi(G){all}      0.289859    0.000094    0.270238    0.307708    0.289600   1127.69   1181.95    1.000
pi(T){all}      0.207364    0.000067    0.191195    0.222970    0.207362   1151.50   1185.05    1.000
alpha{1,2}      0.103220    0.000050    0.089187    0.117402    0.102717   1228.35   1296.16    1.000
alpha{3}        5.085831    1.092732    3.211495    7.152025    4.974179   1335.44   1352.30    1.001
pinvar{all}     0.409523    0.000661    0.357976    0.457102    0.409691   1435.37   1435.93    1.000
------------------------------------------------------------------------------------------------------
* Convergence diagnostic (ESS = Estimated Sample Size); min and avg values
correspond to minimal and average ESS among runs.
ESS value below 100 may indicate that the parameter is undersampled.
+ Convergence diagnostic (PSRF = Potential Scale Reduction Factor; Gelman
and Rubin, 1992) should approach 1.0 as runs converge.


Setting sumt conformat to Simple



 --- CODEML SUMMARY

Model 1: NearlyNeutral	-6181.540846
Model 2: PositiveSelection	-6181.540848
Model 0: one-ratio	-6199.828236
Model 3: discrete	-6177.589209
Model 7: beta	-6181.121194
Model 8: beta&w>1	-6177.575576


Model 0 vs 1	36.57478000000083

Model 2 vs 1	3.99999953515362E-6

Model 8 vs 7	7.091236000000208

Additional information for M7 vs M8:
Naive Empirical Bayes (NEB) analysis
Bayes Empirical Bayes (BEB) analysis (Yang, Wong & Nielsen 2005. Mol. Biol. Evol. 22:1107-1118)
Positively selected sites (*: P>95%; **: P>99%)
(amino acids refer to 1st sequence: D_melanogaster_AcCoAS-PA)

            Pr(w>1)     post mean +- SE for w

   422 Y      0.501         1.211 +- 0.814