--- EXPERIMENT NOTES --- EXPERIMENT PROPERTIES #Tue Nov 22 00:07:42 WET 2016 codeml.models=0 1 2 3 7 8 mrbayes.mpich= mrbayes.ngen=1000000 tcoffee.alignMethod=CLUSTALW2 tcoffee.params= tcoffee.maxSeqs=0 codeml.bin=codeml mrbayes.tburnin=2500 codeml.dir= input.sequences= mrbayes.pburnin=2500 mrbayes.bin=mb_adops tcoffee.bin=t_coffee_ADOPS mrbayes.dir=/usr/bin/ tcoffee.dir= tcoffee.minScore=3 input.fasta=/opt/ADOPS/3/AcCoAS-PA/input.fasta input.names= mrbayes.params= codeml.params= --- PSRF SUMMARY Estimated marginal likelihoods for runs sampled in files "/opt/ADOPS/3/AcCoAS-PA/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run1.p" and "/opt/ADOPS/3/AcCoAS-PA/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run2.p": (Use the harmonic mean for Bayes factor comparisons of models) (Values are saved to the file /opt/ADOPS/3/AcCoAS-PA/batch/allfiles/mrbayes/input.fasta.fasta.mrb.lstat) Run Arithmetic mean Harmonic mean -------------------------------------- 1 -6712.69 -6728.83 2 -6712.91 -6727.89 -------------------------------------- TOTAL -6712.80 -6728.47 -------------------------------------- Model parameter summaries over the runs sampled in files "/opt/ADOPS/3/AcCoAS-PA/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run1.p" and "/opt/ADOPS/3/AcCoAS-PA/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run2.p": Summaries are based on a total of 3002 samples from 2 runs. Each run produced 2001 samples of which 1501 samples were included. Parameter summaries saved to file "/opt/ADOPS/3/AcCoAS-PA/batch/allfiles/mrbayes/input.fasta.fasta.mrb.pstat". 95% HPD Interval -------------------- Parameter Mean Variance Lower Upper Median min ESS* avg ESS PSRF+ ------------------------------------------------------------------------------------------------------ TL{all} 1.122596 0.004176 0.995313 1.245475 1.119862 1487.16 1494.08 1.000 r(A<->C){all} 0.098746 0.000167 0.072965 0.122981 0.098283 1122.87 1236.74 1.000 r(A<->G){all} 0.246898 0.000511 0.204525 0.291708 0.246365 1045.45 1045.85 1.000 r(A<->T){all} 0.096965 0.000298 0.063176 0.130619 0.096562 787.90 816.24 1.000 r(C<->G){all} 0.055907 0.000060 0.041401 0.071458 0.055641 869.42 940.27 1.000 r(C<->T){all} 0.434596 0.000671 0.382403 0.484099 0.434153 884.39 917.87 1.000 r(G<->T){all} 0.066888 0.000119 0.046630 0.089000 0.066423 1082.22 1157.24 1.000 pi(A){all} 0.210251 0.000073 0.193807 0.227382 0.210330 710.92 951.33 1.000 pi(C){all} 0.292525 0.000089 0.273172 0.309998 0.292395 876.28 1053.20 1.000 pi(G){all} 0.289859 0.000094 0.270238 0.307708 0.289600 1127.69 1181.95 1.000 pi(T){all} 0.207364 0.000067 0.191195 0.222970 0.207362 1151.50 1185.05 1.000 alpha{1,2} 0.103220 0.000050 0.089187 0.117402 0.102717 1228.35 1296.16 1.000 alpha{3} 5.085831 1.092732 3.211495 7.152025 4.974179 1335.44 1352.30 1.001 pinvar{all} 0.409523 0.000661 0.357976 0.457102 0.409691 1435.37 1435.93 1.000 ------------------------------------------------------------------------------------------------------ * Convergence diagnostic (ESS = Estimated Sample Size); min and avg values correspond to minimal and average ESS among runs. ESS value below 100 may indicate that the parameter is undersampled. + Convergence diagnostic (PSRF = Potential Scale Reduction Factor; Gelman and Rubin, 1992) should approach 1.0 as runs converge. Setting sumt conformat to Simple --- CODEML SUMMARY Model 1: NearlyNeutral -6181.540846 Model 2: PositiveSelection -6181.540848 Model 0: one-ratio -6199.828236 Model 3: discrete -6177.589209 Model 7: beta -6181.121194 Model 8: beta&w>1 -6177.575576 Model 0 vs 1 36.57478000000083 Model 2 vs 1 3.99999953515362E-6 Model 8 vs 7 7.091236000000208 Additional information for M7 vs M8: Naive Empirical Bayes (NEB) analysis Bayes Empirical Bayes (BEB) analysis (Yang, Wong & Nielsen 2005. Mol. Biol. Evol. 22:1107-1118) Positively selected sites (*: P>95%; **: P>99%) (amino acids refer to 1st sequence: D_melanogaster_AcCoAS-PA) Pr(w>1) post mean +- SE for w 422 Y 0.501 1.211 +- 0.814