--- EXPERIMENT NOTES --- EXPERIMENT PROPERTIES #Wed Dec 07 01:13:18 WET 2016 codeml.models=0 1 2 3 7 8 mrbayes.mpich= mrbayes.ngen=1000000 tcoffee.alignMethod=CLUSTALW2 tcoffee.params= tcoffee.maxSeqs=0 codeml.bin=codeml mrbayes.tburnin=2500 codeml.dir= input.sequences= mrbayes.pburnin=2500 mrbayes.bin=mb_adops tcoffee.bin=t_coffee_ADOPS mrbayes.dir=/usr/bin/ tcoffee.dir= tcoffee.minScore=3 input.fasta=/opt/ADOPS/392/siz-PA/input.fasta input.names= mrbayes.params= codeml.params= --- PSRF SUMMARY Estimated marginal likelihoods for runs sampled in files "/opt/ADOPS/392/siz-PA/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run1.p" and "/opt/ADOPS/392/siz-PA/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run2.p": (Use the harmonic mean for Bayes factor comparisons of models) (Values are saved to the file /opt/ADOPS/392/siz-PA/batch/allfiles/mrbayes/input.fasta.fasta.mrb.lstat) Run Arithmetic mean Harmonic mean -------------------------------------- 1 -12215.93 -12233.52 2 -12215.74 -12231.31 -------------------------------------- TOTAL -12215.83 -12232.93 -------------------------------------- Model parameter summaries over the runs sampled in files "/opt/ADOPS/392/siz-PA/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run1.p" and "/opt/ADOPS/392/siz-PA/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run2.p": Summaries are based on a total of 3002 samples from 2 runs. Each run produced 2001 samples of which 1501 samples were included. Parameter summaries saved to file "/opt/ADOPS/392/siz-PA/batch/allfiles/mrbayes/input.fasta.fasta.mrb.pstat". 95% HPD Interval -------------------- Parameter Mean Variance Lower Upper Median min ESS* avg ESS PSRF+ ------------------------------------------------------------------------------------------------------ TL{all} 0.998814 0.002019 0.917484 1.088333 0.998345 1386.09 1439.27 1.000 r(A<->C){all} 0.076987 0.000081 0.059959 0.094817 0.076816 1064.57 1095.72 1.000 r(A<->G){all} 0.320435 0.000353 0.285635 0.359721 0.320281 537.00 658.98 1.000 r(A<->T){all} 0.125807 0.000222 0.096568 0.155043 0.125674 786.40 935.38 1.000 r(C<->G){all} 0.037935 0.000026 0.028391 0.048192 0.037693 1282.15 1289.31 1.001 r(C<->T){all} 0.371904 0.000386 0.335464 0.411050 0.371772 728.77 766.72 1.001 r(G<->T){all} 0.066932 0.000082 0.049681 0.084788 0.066557 940.32 957.48 1.000 pi(A){all} 0.220503 0.000036 0.209546 0.233141 0.220378 907.21 916.97 1.000 pi(C){all} 0.320193 0.000046 0.306399 0.332667 0.320108 1045.22 1067.96 1.000 pi(G){all} 0.283606 0.000044 0.271170 0.296875 0.283425 1066.14 1121.15 1.000 pi(T){all} 0.175698 0.000027 0.165009 0.185195 0.175764 1254.45 1280.05 1.000 alpha{1,2} 0.098086 0.000041 0.085151 0.109881 0.097992 1252.30 1310.81 1.001 alpha{3} 6.415497 1.605262 4.168278 9.013655 6.317827 1265.43 1383.21 1.000 pinvar{all} 0.430361 0.000376 0.391258 0.467989 0.430386 1387.93 1444.47 1.001 ------------------------------------------------------------------------------------------------------ * Convergence diagnostic (ESS = Estimated Sample Size); min and avg values correspond to minimal and average ESS among runs. ESS value below 100 may indicate that the parameter is undersampled. + Convergence diagnostic (PSRF = Potential Scale Reduction Factor; Gelman and Rubin, 1992) should approach 1.0 as runs converge. Setting sumt conformat to Simple --- CODEML SUMMARY Model 1: NearlyNeutral -10796.774173 Model 2: PositiveSelection -10796.774182 Model 0: one-ratio -10840.67573 Model 3: discrete -10788.685025 Model 7: beta -10790.382782 Model 8: beta&w>1 -10788.821357 Model 0 vs 1 87.8031140000021 Model 2 vs 1 1.799999881768599E-5 Model 8 vs 7 3.122849999999744