--- EXPERIMENT NOTES




 --- EXPERIMENT PROPERTIES

#Wed Dec 07 01:13:18 WET 2016
codeml.models=0 1 2 3 7 8
mrbayes.mpich=
mrbayes.ngen=1000000
tcoffee.alignMethod=CLUSTALW2
tcoffee.params=
tcoffee.maxSeqs=0
codeml.bin=codeml
mrbayes.tburnin=2500
codeml.dir=
input.sequences=
mrbayes.pburnin=2500
mrbayes.bin=mb_adops
tcoffee.bin=t_coffee_ADOPS
mrbayes.dir=/usr/bin/
tcoffee.dir=
tcoffee.minScore=3
input.fasta=/opt/ADOPS/392/siz-PA/input.fasta
input.names=
mrbayes.params=
codeml.params=



 --- PSRF SUMMARY

      Estimated marginal likelihoods for runs sampled in files
"/opt/ADOPS/392/siz-PA/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run1.p" and "/opt/ADOPS/392/siz-PA/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run2.p":
(Use the harmonic mean for Bayes factor comparisons of models)

(Values are saved to the file /opt/ADOPS/392/siz-PA/batch/allfiles/mrbayes/input.fasta.fasta.mrb.lstat)

Run   Arithmetic mean   Harmonic mean
--------------------------------------
1     -12215.93        -12233.52
2     -12215.74        -12231.31
--------------------------------------
TOTAL   -12215.83        -12232.93
--------------------------------------


Model parameter summaries over the runs sampled in files
"/opt/ADOPS/392/siz-PA/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run1.p" and "/opt/ADOPS/392/siz-PA/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run2.p":
Summaries are based on a total of 3002 samples from 2 runs.
Each run produced 2001 samples of which 1501 samples were included.
Parameter summaries saved to file "/opt/ADOPS/392/siz-PA/batch/allfiles/mrbayes/input.fasta.fasta.mrb.pstat".

95% HPD Interval
--------------------
Parameter         Mean      Variance     Lower       Upper       Median    min ESS*  avg ESS    PSRF+
------------------------------------------------------------------------------------------------------
TL{all}         0.998814    0.002019    0.917484    1.088333    0.998345   1386.09   1439.27    1.000
r(A<->C){all}   0.076987    0.000081    0.059959    0.094817    0.076816   1064.57   1095.72    1.000
r(A<->G){all}   0.320435    0.000353    0.285635    0.359721    0.320281    537.00    658.98    1.000
r(A<->T){all}   0.125807    0.000222    0.096568    0.155043    0.125674    786.40    935.38    1.000
r(C<->G){all}   0.037935    0.000026    0.028391    0.048192    0.037693   1282.15   1289.31    1.001
r(C<->T){all}   0.371904    0.000386    0.335464    0.411050    0.371772    728.77    766.72    1.001
r(G<->T){all}   0.066932    0.000082    0.049681    0.084788    0.066557    940.32    957.48    1.000
pi(A){all}      0.220503    0.000036    0.209546    0.233141    0.220378    907.21    916.97    1.000
pi(C){all}      0.320193    0.000046    0.306399    0.332667    0.320108   1045.22   1067.96    1.000
pi(G){all}      0.283606    0.000044    0.271170    0.296875    0.283425   1066.14   1121.15    1.000
pi(T){all}      0.175698    0.000027    0.165009    0.185195    0.175764   1254.45   1280.05    1.000
alpha{1,2}      0.098086    0.000041    0.085151    0.109881    0.097992   1252.30   1310.81    1.001
alpha{3}        6.415497    1.605262    4.168278    9.013655    6.317827   1265.43   1383.21    1.000
pinvar{all}     0.430361    0.000376    0.391258    0.467989    0.430386   1387.93   1444.47    1.001
------------------------------------------------------------------------------------------------------
* Convergence diagnostic (ESS = Estimated Sample Size); min and avg values
correspond to minimal and average ESS among runs.
ESS value below 100 may indicate that the parameter is undersampled.
+ Convergence diagnostic (PSRF = Potential Scale Reduction Factor; Gelman
and Rubin, 1992) should approach 1.0 as runs converge.


Setting sumt conformat to Simple



 --- CODEML SUMMARY

Model 1: NearlyNeutral	-10796.774173
Model 2: PositiveSelection	-10796.774182
Model 0: one-ratio	-10840.67573
Model 3: discrete	-10788.685025
Model 7: beta	-10790.382782
Model 8: beta&w>1	-10788.821357


Model 0 vs 1	87.8031140000021

Model 2 vs 1	1.799999881768599E-5

Model 8 vs 7	3.122849999999744