--- EXPERIMENT NOTES




 --- EXPERIMENT PROPERTIES

#Sat Nov 12 01:59:30 WET 2016
codeml.models=0 1 2 3 7 8
mrbayes.mpich=
mrbayes.ngen=1000000
tcoffee.alignMethod=CLUSTALW2
tcoffee.params=
tcoffee.maxSeqs=0
codeml.bin=codeml
mrbayes.tburnin=2500
codeml.dir=
input.sequences=
mrbayes.pburnin=2500
mrbayes.bin=mb_adops
tcoffee.bin=t_coffee_ADOPS
mrbayes.dir=/usr/bin/
tcoffee.dir=
tcoffee.minScore=3
input.fasta=/opt/ADOPS/2/Abl-PF/input.fasta
input.names=
mrbayes.params=
codeml.params=



 --- PSRF SUMMARY

      Estimated marginal likelihoods for runs sampled in files
"/opt/ADOPS/2/Abl-PF/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run1.p" and "/opt/ADOPS/2/Abl-PF/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run2.p":
(Use the harmonic mean for Bayes factor comparisons of models)

(Values are saved to the file /opt/ADOPS/2/Abl-PF/batch/allfiles/mrbayes/input.fasta.fasta.mrb.lstat)

Run   Arithmetic mean   Harmonic mean
--------------------------------------
1     -16006.35        -16023.21
2     -16006.70        -16022.03
--------------------------------------
TOTAL   -16006.51        -16022.79
--------------------------------------


Model parameter summaries over the runs sampled in files
"/opt/ADOPS/2/Abl-PF/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run1.p" and "/opt/ADOPS/2/Abl-PF/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run2.p":
Summaries are based on a total of 3002 samples from 2 runs.
Each run produced 2001 samples of which 1501 samples were included.
Parameter summaries saved to file "/opt/ADOPS/2/Abl-PF/batch/allfiles/mrbayes/input.fasta.fasta.mrb.pstat".

95% HPD Interval
--------------------
Parameter         Mean      Variance     Lower       Upper       Median    min ESS*  avg ESS    PSRF+
------------------------------------------------------------------------------------------------------
TL{all}         0.759278    0.000949    0.699319    0.820956    0.758721   1452.19   1476.60    1.001
r(A<->C){all}   0.079685    0.000058    0.065024    0.094261    0.079534   1057.59   1073.19    1.000
r(A<->G){all}   0.237207    0.000210    0.210218    0.265446    0.236852    774.75    884.73    1.000
r(A<->T){all}   0.161568    0.000240    0.131281    0.191564    0.161092    909.76   1023.88    1.000
r(C<->G){all}   0.041153    0.000022    0.032017    0.049777    0.040898   1002.44   1018.22    1.001
r(C<->T){all}   0.380654    0.000319    0.346335    0.414703    0.380276    794.30    922.71    1.000
r(G<->T){all}   0.099733    0.000101    0.079975    0.119570    0.099582   1076.19   1081.15    1.000
pi(A){all}      0.236055    0.000031    0.225413    0.247055    0.236116    782.88    975.57    1.002
pi(C){all}      0.322015    0.000036    0.309558    0.332872    0.322031    724.73    809.82    1.000
pi(G){all}      0.280280    0.000035    0.268877    0.292018    0.280279    877.14    924.88    1.001
pi(T){all}      0.161649    0.000020    0.152979    0.170390    0.161517   1043.48   1052.41    1.000
alpha{1,2}      0.139083    0.000083    0.120920    0.156043    0.138737   1276.74   1283.02    1.000
alpha{3}        6.524392    1.522409    4.459491    9.187657    6.419408   1354.40   1397.88    1.000
pinvar{all}     0.387064    0.000425    0.346930    0.425734    0.387377   1214.50   1272.34    1.000
------------------------------------------------------------------------------------------------------
* Convergence diagnostic (ESS = Estimated Sample Size); min and avg values
correspond to minimal and average ESS among runs.
ESS value below 100 may indicate that the parameter is undersampled.
+ Convergence diagnostic (PSRF = Potential Scale Reduction Factor; Gelman
and Rubin, 1992) should approach 1.0 as runs converge.


Setting sumt conformat to Simple



 --- CODEML SUMMARY

Model 1: NearlyNeutral	-14473.408666
Model 2: PositiveSelection	-14473.408666
Model 0: one-ratio	-14596.637491
Model 3: discrete	-14465.913145
Model 7: beta	-14466.662107
Model 8: beta&w>1	-14466.160768


Model 0 vs 1	246.45765000000029

Model 2 vs 1	0.0

Model 8 vs 7	1.002678000000742