--- EXPERIMENT NOTES --- EXPERIMENT PROPERTIES #Fri Nov 11 23:29:57 WET 2016 codeml.models=0 1 2 3 7 8 mrbayes.mpich= mrbayes.ngen=1000000 tcoffee.alignMethod=CLUSTALW2 tcoffee.params= tcoffee.maxSeqs=0 codeml.bin=codeml mrbayes.tburnin=2500 codeml.dir= input.sequences= mrbayes.pburnin=2500 mrbayes.bin=mb_adops tcoffee.bin=t_coffee_ADOPS mrbayes.dir=/usr/bin/ tcoffee.dir= tcoffee.minScore=3 input.fasta=/opt/ADOPS/2/Abl-PB/input.fasta input.names= mrbayes.params= codeml.params= --- PSRF SUMMARY Estimated marginal likelihoods for runs sampled in files "/opt/ADOPS/2/Abl-PB/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run1.p" and "/opt/ADOPS/2/Abl-PB/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run2.p": (Use the harmonic mean for Bayes factor comparisons of models) (Values are saved to the file /opt/ADOPS/2/Abl-PB/batch/allfiles/mrbayes/input.fasta.fasta.mrb.lstat) Run Arithmetic mean Harmonic mean -------------------------------------- 1 -15203.78 -15218.98 2 -15203.96 -15219.00 -------------------------------------- TOTAL -15203.87 -15218.99 -------------------------------------- Model parameter summaries over the runs sampled in files "/opt/ADOPS/2/Abl-PB/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run1.p" and "/opt/ADOPS/2/Abl-PB/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run2.p": Summaries are based on a total of 3002 samples from 2 runs. Each run produced 2001 samples of which 1501 samples were included. Parameter summaries saved to file "/opt/ADOPS/2/Abl-PB/batch/allfiles/mrbayes/input.fasta.fasta.mrb.pstat". 95% HPD Interval -------------------- Parameter Mean Variance Lower Upper Median min ESS* avg ESS PSRF+ ------------------------------------------------------------------------------------------------------ TL{all} 0.815221 0.001131 0.752052 0.882878 0.814769 1316.65 1408.83 1.000 r(A<->C){all} 0.080261 0.000062 0.065329 0.095872 0.079916 839.19 1012.98 1.000 r(A<->G){all} 0.244529 0.000231 0.215216 0.274614 0.244025 824.78 948.15 1.001 r(A<->T){all} 0.163605 0.000241 0.134020 0.195211 0.163130 860.31 893.44 1.003 r(C<->G){all} 0.035398 0.000018 0.027270 0.043899 0.035261 1182.39 1194.97 1.000 r(C<->T){all} 0.379818 0.000323 0.343909 0.413059 0.379562 794.40 932.30 1.001 r(G<->T){all} 0.096389 0.000104 0.076763 0.116141 0.096244 798.26 866.76 1.001 pi(A){all} 0.225127 0.000031 0.213791 0.235146 0.224999 979.58 1037.68 1.000 pi(C){all} 0.324368 0.000038 0.311754 0.335911 0.324307 1005.26 1073.58 1.000 pi(G){all} 0.290062 0.000035 0.278723 0.302247 0.290141 961.30 1145.15 1.000 pi(T){all} 0.160442 0.000022 0.150930 0.168801 0.160415 1006.35 1148.06 1.000 alpha{1,2} 0.128008 0.000069 0.113133 0.145054 0.127832 1349.90 1404.08 1.000 alpha{3} 6.632409 1.647805 4.445218 9.290540 6.494378 721.90 1111.45 1.000 pinvar{all} 0.385402 0.000431 0.347709 0.429270 0.385554 1198.47 1337.79 1.000 ------------------------------------------------------------------------------------------------------ * Convergence diagnostic (ESS = Estimated Sample Size); min and avg values correspond to minimal and average ESS among runs. ESS value below 100 may indicate that the parameter is undersampled. + Convergence diagnostic (PSRF = Potential Scale Reduction Factor; Gelman and Rubin, 1992) should approach 1.0 as runs converge. Setting sumt conformat to Simple --- CODEML SUMMARY Model 1: NearlyNeutral -13779.593818 Model 2: PositiveSelection -13779.593818 Model 0: one-ratio -13897.267436 Model 3: discrete -13772.100306 Model 7: beta -13774.757193 Model 8: beta&w>1 -13772.261476 Model 0 vs 1 235.34723600000143 Model 2 vs 1 0.0 Model 8 vs 7 4.991433999999572
>C1 MGAQQGKDRGAHSGGGGSGAPVSCIGLSSSPVASVSPHCISSSSGVSSAP LGGGSTLRGSRIKSSSSGVASGSGSGGGGGGSGSGLSQRSGGHKDARCNP TVGLNIFTEHNGTKHSSFRGHPGKYHMNLEALLQSRPLPHIPAGSTAASL LADAAELQQHQQDSGGLGLQGSSLGGGHSSTTSVFESAHRWTSKENLLAP GPEEDDPQLFVALYDFQAGGENQLSLKKGEQVRILSYNKSGEWCEAHSDS GNVGWVPSNYVTPLNSLEKHSWYHGPISRNAAEYLLSSGINGSFLVRESE SSPGQRSISLRYEGRVYHYRISEDPDGKVFVTQEAKFNTLAELVHHHSVP HEGHGLITPLLYPAPKQNKPTVFPLSPEPDEWEICRTDIMMKHKLGGGQY GEVYEAVWKRYGNTVAVKTLKEDTMALKDFLEEAAIMKEMKHPNLVQLIG VCTREPPFYIITEFMSHGNLLDFLRSAGRETLDAVALLYMATQIASGMSY LESRNYIHRDLAARNCLVGDNKLVKVADFGLARLMRDDTYTAHAGAKFPI KWTAPEGLAYNKFSTKSDVWAFGVLLWEIATYGMSPYPAIDLTDVYHKLD KGYRMERPPGCPPEVYDLMRQCWQWDATDRPTFKSIHHALEHMFQESSIT EAVEKQLNANATSASSSAPSTSGVATGGGATTTTAASGCASSSSATASLS LTPQMVKKGLPGGQALTPNAHHNDPHQQQASTPMSETGSTSTKLSTFSSQ GKGNVQMRRTTNKQGKQAPAPPKRTSLLSSSRDSTYREEDPANARCNFID DLSTNGLARDINSLTQRYDSETDPAADPDTDATGDSLEQSLSQVIAAPVT NKMQHSLHSGGGGGGIGPRSSQQHSSFKRPTGTPVMGNRGLETRQSKRSQ LHSQAPGPGPPSTQPHHGNNGVVTSAHPITVGALDVMNVKQVVNRYGTLP KGARIGAYLDSLEDSSEAAPALPATAPSLPPANGHATPPAARLNPKASPI PPQQMIRSNSSGGVTMQNNAAASLNKLQRHRTTTEGTMMTFSSFRAGGSS SSPKRSASGVASGVQPALANLEFPPPPLDLPPPPEEFEGGPPPPPPAPES AVQAIQQHLHAQLPNNGNISNGNGTNNNDSSHNDVSNIAPSVEEASSRFG VSLRKREPSTDSCSSLGSPPEDLKEKLITEIKAAGKDTAPASHLANGSGI AVVDPVSLLVTELAESMNLPKPPPQQQQKLTNGNSTGSGFKAQLKKVEPK KMSAPMPKAEPANTIIDFKAHLRRVDKEKEPATPAPAPATVAVANNANCN TTGTLNRKEDGSKKFSQAMQKTEIKIDVTNSNVEADAGAAGEGDLGKRRS TGSINSLKKLWEQQPPAPDYATSTILQQQPSVVNGGGTPNAQLSPKYGMK SGAINTVGTLPAKLGNKQPPAAPPPPPPNCTTSNSSTTSISTSSRDCTSR QQASSTIKTSHSTQLFTDDEEQSHTEGLGSGGQGSADMTQSLYEQKPQIQ QKPAVPHKPTKLTIYATPIAKLTEPASSASSTQISRESILELVGLLEGSL KHPVNAIAGSQWLQLSDKLNILHNSCVIFAENGAMPPHSKFQFRELVTRV EAQSQHLRSAGSKNVQDNERLVAEVGQSLRQISNALNRoooooooooooo ooooo >C2 MGAQQGKDRGAHSGGGGSGAPVSCIGLSSSPVASVSPHCISSSSGVSSAP LGGGSTLRGSRIKSSSSGVASGSGSGGGGGGSGSGLSQRSGGHKDARCNP TVGLNIFTEHNGTKHSSFRGHPGKYHMNLEALLQSRPLPHIPAGSTAASL LADAAELQQHQQDSGGLGLQGSSLGGGHSSTTSVFESAHRWTSKENLLAP GPEEDDPQLFVALYDFQAGGENQLSLKKGEQVRILSYNKSGEWCEAHSDS GNVGWVPSNYVTPLNSLEKHSWYHGPISRNAAEYLLSSGINGSFLVRESE SSPGQRSISLRYEGRVYHYRISEDPDGKVFVTQEAKFNTLAELVHHHSVP HEGHGLITPLLYPAPKQNKPTVFPLSPEPDEWEICRTDIMMKHKLGGGQY GEVYEAVWKRYGNTVAVKTLKEDTMALKDFLEEAAIMKEMKHPNLVQLIG VCTREPPFYIITEFMSHGNLLDFLRSAGRETLDAVALLYMATQIASGMSY LESRNYIHRDLAARNCLVGDNKLVKVADFGLARLMRDDTYTAHAGAKFPI KWTAPEGLAYNKFSTKSDVWAFGVLLWEIATYGMSPYPGIDLTDVYHKLE KGYRMERPPGCPPEVYDLMRQCWQWDATDRPTFKSIHHALEHMFQESSIT EAVEKQLNANATSASSSAPSTSGVATGGGATTTTAASGCASSSSATASLS LTPQMVKKGLSGGQSLTPNAHHNDPHQQQASTPMSETGSTSTKLSTFSSQ GKGNVQMRRTTNKQGKQAPAPPKRTSLLSSSRDSTYREEDPANARCNFID DLSTNGLARDINSLTQRYDSETDPAGDPDTDATGDSLEQSLSQVIAAPAT NKMQHSLHSGGGGGGIGPRSSQQHSSFKRPTGTPVMGNRGLETRQSKRSQ HHPQAPGPGPPSTQPHHGNNGVLTSAHPITVGALEVMNVKQVVNRYGTLP KGARIGAYLDSLEDSTEAAPPLPATAPSLPPANGHATPPSARLNPKASPI PPQQMIRSNSSGGVTMQNNAAASLNKLQRHRTTTEGTMMTFSSFRAGGSS SSPKRSASGLASGVQPALANLEFPPPPLDLPPPPEEFEGGPPPPPPAPES AVQAIQQHLHAQLPNNGNISNGNGSNNNDSSHNDVSNIAPSVEEASSRFG VSLRKREPSTDSCSSLGSPPEDLKEKLITEIKAAGKESAPASHLANGSGI AVVDPVSLLVTELAESMNLPKSPPQQQQKLTNGNGTGSGFKAQLKKVEPK KMSAPMPKAEPASTIIDFKAHLRRVDKEKEPAAPAPAPVAVANNANCNTT GTLNRKEDSSKKFSQAMQKTEIKIDVTNSNVEADAGATGEGDLGKRRSTG SINSLKKLWEQQPPASDYATSTILQQQPVVNGGGTQTAQLSPKYGMKSGA INTAGTLPAKLGNKPPPAAPPPPPPNCTTSNSSTTSISTSSRDCTSRQQA SSTIKTSHSTQLFADDEEQSHTEGLGSG