--- EXPERIMENT NOTES




 --- EXPERIMENT PROPERTIES

#Fri Nov 11 23:29:57 WET 2016
codeml.models=0 1 2 3 7 8
mrbayes.mpich=
mrbayes.ngen=1000000
tcoffee.alignMethod=CLUSTALW2
tcoffee.params=
tcoffee.maxSeqs=0
codeml.bin=codeml
mrbayes.tburnin=2500
codeml.dir=
input.sequences=
mrbayes.pburnin=2500
mrbayes.bin=mb_adops
tcoffee.bin=t_coffee_ADOPS
mrbayes.dir=/usr/bin/
tcoffee.dir=
tcoffee.minScore=3
input.fasta=/opt/ADOPS/2/Abl-PB/input.fasta
input.names=
mrbayes.params=
codeml.params=



 --- PSRF SUMMARY

      Estimated marginal likelihoods for runs sampled in files
"/opt/ADOPS/2/Abl-PB/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run1.p" and "/opt/ADOPS/2/Abl-PB/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run2.p":
(Use the harmonic mean for Bayes factor comparisons of models)

(Values are saved to the file /opt/ADOPS/2/Abl-PB/batch/allfiles/mrbayes/input.fasta.fasta.mrb.lstat)

Run   Arithmetic mean   Harmonic mean
--------------------------------------
1     -15203.78        -15218.98
2     -15203.96        -15219.00
--------------------------------------
TOTAL   -15203.87        -15218.99
--------------------------------------


Model parameter summaries over the runs sampled in files
"/opt/ADOPS/2/Abl-PB/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run1.p" and "/opt/ADOPS/2/Abl-PB/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run2.p":
Summaries are based on a total of 3002 samples from 2 runs.
Each run produced 2001 samples of which 1501 samples were included.
Parameter summaries saved to file "/opt/ADOPS/2/Abl-PB/batch/allfiles/mrbayes/input.fasta.fasta.mrb.pstat".

95% HPD Interval
--------------------
Parameter         Mean      Variance     Lower       Upper       Median    min ESS*  avg ESS    PSRF+
------------------------------------------------------------------------------------------------------
TL{all}         0.815221    0.001131    0.752052    0.882878    0.814769   1316.65   1408.83    1.000
r(A<->C){all}   0.080261    0.000062    0.065329    0.095872    0.079916    839.19   1012.98    1.000
r(A<->G){all}   0.244529    0.000231    0.215216    0.274614    0.244025    824.78    948.15    1.001
r(A<->T){all}   0.163605    0.000241    0.134020    0.195211    0.163130    860.31    893.44    1.003
r(C<->G){all}   0.035398    0.000018    0.027270    0.043899    0.035261   1182.39   1194.97    1.000
r(C<->T){all}   0.379818    0.000323    0.343909    0.413059    0.379562    794.40    932.30    1.001
r(G<->T){all}   0.096389    0.000104    0.076763    0.116141    0.096244    798.26    866.76    1.001
pi(A){all}      0.225127    0.000031    0.213791    0.235146    0.224999    979.58   1037.68    1.000
pi(C){all}      0.324368    0.000038    0.311754    0.335911    0.324307   1005.26   1073.58    1.000
pi(G){all}      0.290062    0.000035    0.278723    0.302247    0.290141    961.30   1145.15    1.000
pi(T){all}      0.160442    0.000022    0.150930    0.168801    0.160415   1006.35   1148.06    1.000
alpha{1,2}      0.128008    0.000069    0.113133    0.145054    0.127832   1349.90   1404.08    1.000
alpha{3}        6.632409    1.647805    4.445218    9.290540    6.494378    721.90   1111.45    1.000
pinvar{all}     0.385402    0.000431    0.347709    0.429270    0.385554   1198.47   1337.79    1.000
------------------------------------------------------------------------------------------------------
* Convergence diagnostic (ESS = Estimated Sample Size); min and avg values
correspond to minimal and average ESS among runs.
ESS value below 100 may indicate that the parameter is undersampled.
+ Convergence diagnostic (PSRF = Potential Scale Reduction Factor; Gelman
and Rubin, 1992) should approach 1.0 as runs converge.


Setting sumt conformat to Simple



 --- CODEML SUMMARY

Model 1: NearlyNeutral	-13779.593818
Model 2: PositiveSelection	-13779.593818
Model 0: one-ratio	-13897.267436
Model 3: discrete	-13772.100306
Model 7: beta	-13774.757193
Model 8: beta&w>1	-13772.261476


Model 0 vs 1	235.34723600000143

Model 2 vs 1	0.0

Model 8 vs 7	4.991433999999572
>C1
MGAQQGKDRGAHSGGGGSGAPVSCIGLSSSPVASVSPHCISSSSGVSSAP
LGGGSTLRGSRIKSSSSGVASGSGSGGGGGGSGSGLSQRSGGHKDARCNP
TVGLNIFTEHNGTKHSSFRGHPGKYHMNLEALLQSRPLPHIPAGSTAASL
LADAAELQQHQQDSGGLGLQGSSLGGGHSSTTSVFESAHRWTSKENLLAP
GPEEDDPQLFVALYDFQAGGENQLSLKKGEQVRILSYNKSGEWCEAHSDS
GNVGWVPSNYVTPLNSLEKHSWYHGPISRNAAEYLLSSGINGSFLVRESE
SSPGQRSISLRYEGRVYHYRISEDPDGKVFVTQEAKFNTLAELVHHHSVP
HEGHGLITPLLYPAPKQNKPTVFPLSPEPDEWEICRTDIMMKHKLGGGQY
GEVYEAVWKRYGNTVAVKTLKEDTMALKDFLEEAAIMKEMKHPNLVQLIG
VCTREPPFYIITEFMSHGNLLDFLRSAGRETLDAVALLYMATQIASGMSY
LESRNYIHRDLAARNCLVGDNKLVKVADFGLARLMRDDTYTAHAGAKFPI
KWTAPEGLAYNKFSTKSDVWAFGVLLWEIATYGMSPYPAIDLTDVYHKLD
KGYRMERPPGCPPEVYDLMRQCWQWDATDRPTFKSIHHALEHMFQESSIT
EAVEKQLNANATSASSSAPSTSGVATGGGATTTTAASGCASSSSATASLS
LTPQMVKKGLPGGQALTPNAHHNDPHQQQASTPMSETGSTSTKLSTFSSQ
GKGNVQMRRTTNKQGKQAPAPPKRTSLLSSSRDSTYREEDPANARCNFID
DLSTNGLARDINSLTQRYDSETDPAADPDTDATGDSLEQSLSQVIAAPVT
NKMQHSLHSGGGGGGIGPRSSQQHSSFKRPTGTPVMGNRGLETRQSKRSQ
LHSQAPGPGPPSTQPHHGNNGVVTSAHPITVGALDVMNVKQVVNRYGTLP
KGARIGAYLDSLEDSSEAAPALPATAPSLPPANGHATPPAARLNPKASPI
PPQQMIRSNSSGGVTMQNNAAASLNKLQRHRTTTEGTMMTFSSFRAGGSS
SSPKRSASGVASGVQPALANLEFPPPPLDLPPPPEEFEGGPPPPPPAPES
AVQAIQQHLHAQLPNNGNISNGNGTNNNDSSHNDVSNIAPSVEEASSRFG
VSLRKREPSTDSCSSLGSPPEDLKEKLITEIKAAGKDTAPASHLANGSGI
AVVDPVSLLVTELAESMNLPKPPPQQQQKLTNGNSTGSGFKAQLKKVEPK
KMSAPMPKAEPANTIIDFKAHLRRVDKEKEPATPAPAPATVAVANNANCN
TTGTLNRKEDGSKKFSQAMQKTEIKIDVTNSNVEADAGAAGEGDLGKRRS
TGSINSLKKLWEQQPPAPDYATSTILQQQPSVVNGGGTPNAQLSPKYGMK
SGAINTVGTLPAKLGNKQPPAAPPPPPPNCTTSNSSTTSISTSSRDCTSR
QQASSTIKTSHSTQLFTDDEEQSHTEGLGSGGQGSADMTQSLYEQKPQIQ
QKPAVPHKPTKLTIYATPIAKLTEPASSASSTQISRESILELVGLLEGSL
KHPVNAIAGSQWLQLSDKLNILHNSCVIFAENGAMPPHSKFQFRELVTRV
EAQSQHLRSAGSKNVQDNERLVAEVGQSLRQISNALNRoooooooooooo
ooooo
>C2
MGAQQGKDRGAHSGGGGSGAPVSCIGLSSSPVASVSPHCISSSSGVSSAP
LGGGSTLRGSRIKSSSSGVASGSGSGGGGGGSGSGLSQRSGGHKDARCNP
TVGLNIFTEHNGTKHSSFRGHPGKYHMNLEALLQSRPLPHIPAGSTAASL
LADAAELQQHQQDSGGLGLQGSSLGGGHSSTTSVFESAHRWTSKENLLAP
GPEEDDPQLFVALYDFQAGGENQLSLKKGEQVRILSYNKSGEWCEAHSDS
GNVGWVPSNYVTPLNSLEKHSWYHGPISRNAAEYLLSSGINGSFLVRESE
SSPGQRSISLRYEGRVYHYRISEDPDGKVFVTQEAKFNTLAELVHHHSVP
HEGHGLITPLLYPAPKQNKPTVFPLSPEPDEWEICRTDIMMKHKLGGGQY
GEVYEAVWKRYGNTVAVKTLKEDTMALKDFLEEAAIMKEMKHPNLVQLIG
VCTREPPFYIITEFMSHGNLLDFLRSAGRETLDAVALLYMATQIASGMSY
LESRNYIHRDLAARNCLVGDNKLVKVADFGLARLMRDDTYTAHAGAKFPI
KWTAPEGLAYNKFSTKSDVWAFGVLLWEIATYGMSPYPGIDLTDVYHKLE
KGYRMERPPGCPPEVYDLMRQCWQWDATDRPTFKSIHHALEHMFQESSIT
EAVEKQLNANATSASSSAPSTSGVATGGGATTTTAASGCASSSSATASLS
LTPQMVKKGLSGGQSLTPNAHHNDPHQQQASTPMSETGSTSTKLSTFSSQ
GKGNVQMRRTTNKQGKQAPAPPKRTSLLSSSRDSTYREEDPANARCNFID
DLSTNGLARDINSLTQRYDSETDPAGDPDTDATGDSLEQSLSQVIAAPAT
NKMQHSLHSGGGGGGIGPRSSQQHSSFKRPTGTPVMGNRGLETRQSKRSQ
HHPQAPGPGPPSTQPHHGNNGVLTSAHPITVGALEVMNVKQVVNRYGTLP
KGARIGAYLDSLEDSTEAAPPLPATAPSLPPANGHATPPSARLNPKASPI
PPQQMIRSNSSGGVTMQNNAAASLNKLQRHRTTTEGTMMTFSSFRAGGSS
SSPKRSASGLASGVQPALANLEFPPPPLDLPPPPEEFEGGPPPPPPAPES
AVQAIQQHLHAQLPNNGNISNGNGSNNNDSSHNDVSNIAPSVEEASSRFG
VSLRKREPSTDSCSSLGSPPEDLKEKLITEIKAAGKESAPASHLANGSGI
AVVDPVSLLVTELAESMNLPKSPPQQQQKLTNGNGTGSGFKAQLKKVEPK
KMSAPMPKAEPASTIIDFKAHLRRVDKEKEPAAPAPAPVAVANNANCNTT
GTLNRKEDSSKKFSQAMQKTEIKIDVTNSNVEADAGATGEGDLGKRRSTG
SINSLKKLWEQQPPASDYATSTILQQQPVVNGGGTQTAQLSPKYGMKSGA
INTAGTLPAKLGNKPPPAAPPPPPPNCTTSNSSTTSISTSSRDCTSRQQA
SSTIKTSHSTQLFADDEEQSHTEGLGSG