--- EXPERIMENT NOTES --- EXPERIMENT PROPERTIES #Sat Nov 19 00:07:46 WET 2016 codeml.models=0 1 2 3 7 8 mrbayes.mpich= mrbayes.ngen=1000000 tcoffee.alignMethod=CLUSTALW2 tcoffee.params= tcoffee.maxSeqs=0 codeml.bin=codeml mrbayes.tburnin=2500 codeml.dir= input.sequences= mrbayes.pburnin=2500 mrbayes.bin=mb_adops tcoffee.bin=t_coffee_ADOPS mrbayes.dir=/usr/bin/ tcoffee.dir= tcoffee.minScore=3 input.fasta=/opt/ADOPS/267/heph-PQ/input.fasta input.names= mrbayes.params= codeml.params= --- PSRF SUMMARY Estimated marginal likelihoods for runs sampled in files "/opt/ADOPS/267/heph-PQ/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run1.p" and "/opt/ADOPS/267/heph-PQ/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run2.p": (Use the harmonic mean for Bayes factor comparisons of models) (Values are saved to the file /opt/ADOPS/267/heph-PQ/batch/allfiles/mrbayes/input.fasta.fasta.mrb.lstat) Run Arithmetic mean Harmonic mean -------------------------------------- 1 -4602.31 -4625.05 2 -4601.39 -4618.12 -------------------------------------- TOTAL -4601.75 -4624.36 -------------------------------------- Model parameter summaries over the runs sampled in files "/opt/ADOPS/267/heph-PQ/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run1.p" and "/opt/ADOPS/267/heph-PQ/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run2.p": Summaries are based on a total of 3002 samples from 2 runs. Each run produced 2001 samples of which 1501 samples were included. Parameter summaries saved to file "/opt/ADOPS/267/heph-PQ/batch/allfiles/mrbayes/input.fasta.fasta.mrb.pstat". 95% HPD Interval -------------------- Parameter Mean Variance Lower Upper Median min ESS* avg ESS PSRF+ ------------------------------------------------------------------------------------------------------ TL{all} 0.836180 0.004484 0.713225 0.972442 0.832610 983.90 1242.45 1.000 r(A<->C){all} 0.089550 0.000208 0.061020 0.117268 0.088849 1058.34 1123.77 1.000 r(A<->G){all} 0.253958 0.000876 0.193207 0.308745 0.253526 860.46 918.56 1.000 r(A<->T){all} 0.083936 0.000446 0.045029 0.127624 0.082380 866.97 944.17 1.000 r(C<->G){all} 0.052964 0.000094 0.034989 0.072490 0.052519 924.22 1020.70 1.001 r(C<->T){all} 0.442562 0.001249 0.375322 0.513019 0.441897 893.91 918.92 1.001 r(G<->T){all} 0.077030 0.000243 0.047449 0.107919 0.076501 1123.96 1236.53 1.001 pi(A){all} 0.235354 0.000118 0.216044 0.258509 0.235282 1024.87 1082.40 1.000 pi(C){all} 0.329975 0.000135 0.306793 0.351716 0.329827 1079.98 1220.89 1.000 pi(G){all} 0.248699 0.000120 0.228251 0.270516 0.248768 1157.11 1194.00 1.001 pi(T){all} 0.185971 0.000090 0.166892 0.203250 0.185805 1104.39 1171.17 1.001 alpha{1,2} 0.150788 0.000229 0.122431 0.180736 0.149648 1301.95 1401.48 1.000 alpha{3} 4.087019 1.051216 2.158417 6.031862 3.945916 1216.70 1350.23 1.000 pinvar{all} 0.495563 0.000889 0.438677 0.555465 0.496249 918.35 1143.65 1.000 ------------------------------------------------------------------------------------------------------ * Convergence diagnostic (ESS = Estimated Sample Size); min and avg values correspond to minimal and average ESS among runs. ESS value below 100 may indicate that the parameter is undersampled. + Convergence diagnostic (PSRF = Potential Scale Reduction Factor; Gelman and Rubin, 1992) should approach 1.0 as runs converge. Setting sumt conformat to Simple --- CODEML SUMMARY Model 1: NearlyNeutral -4227.346774 Model 2: PositiveSelection -4227.346774 Model 0: one-ratio -4232.966012 Model 3: discrete -4219.192004 Model 7: beta -4219.296233 Model 8: beta&w>1 -4219.297269 Model 0 vs 1 11.238476000000446 Model 2 vs 1 0.0 Model 8 vs 7 0.0020719999993161764