--- EXPERIMENT NOTES




 --- EXPERIMENT PROPERTIES

#Wed Nov 16 02:29:09 WET 2016
codeml.models=0 1 2 3 7 8
mrbayes.mpich=
mrbayes.ngen=1000000
tcoffee.alignMethod=CLUSTALW2
tcoffee.params=
tcoffee.maxSeqs=0
codeml.bin=codeml
mrbayes.tburnin=2500
codeml.dir=
input.sequences=
mrbayes.pburnin=2500
mrbayes.bin=mb_adops
tcoffee.bin=t_coffee_ADOPS
mrbayes.dir=/usr/bin/
tcoffee.dir=
tcoffee.minScore=3
input.fasta=/opt/ADOPS/241/endos-PA/input.fasta
input.names=
mrbayes.params=
codeml.params=



 --- PSRF SUMMARY

      Estimated marginal likelihoods for runs sampled in files
"/opt/ADOPS/241/endos-PA/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run1.p" and "/opt/ADOPS/241/endos-PA/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run2.p":
(Use the harmonic mean for Bayes factor comparisons of models)

(Values are saved to the file /opt/ADOPS/241/endos-PA/batch/allfiles/mrbayes/input.fasta.fasta.mrb.lstat)

Run   Arithmetic mean   Harmonic mean
--------------------------------------
1      -1034.72         -1052.43
2      -1034.72         -1057.95
--------------------------------------
TOTAL    -1034.72         -1057.26
--------------------------------------


Model parameter summaries over the runs sampled in files
"/opt/ADOPS/241/endos-PA/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run1.p" and "/opt/ADOPS/241/endos-PA/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run2.p":
Summaries are based on a total of 3002 samples from 2 runs.
Each run produced 2001 samples of which 1501 samples were included.
Parameter summaries saved to file "/opt/ADOPS/241/endos-PA/batch/allfiles/mrbayes/input.fasta.fasta.mrb.pstat".

95% HPD Interval
--------------------
Parameter         Mean      Variance     Lower       Upper       Median    min ESS*  avg ESS    PSRF+
------------------------------------------------------------------------------------------------------
TL{all}         0.864909    0.021560    0.606028    1.166137    0.850675   1069.18   1219.70    1.000
r(A<->C){all}   0.059170    0.000645    0.014575    0.109451    0.055984    730.17    756.21    1.000
r(A<->G){all}   0.161766    0.002844    0.068365    0.263594    0.154507    481.83    510.35    1.000
r(A<->T){all}   0.147841    0.004031    0.039627    0.276007    0.139888    526.97    537.51    1.000
r(C<->G){all}   0.027423    0.000152    0.006259    0.052005    0.025608   1111.26   1117.14    1.000
r(C<->T){all}   0.560160    0.007372    0.400017    0.728563    0.558670    368.66    405.90    1.000
r(G<->T){all}   0.043640    0.000607    0.004498    0.091908    0.039432    851.11    898.79    1.000
pi(A){all}      0.263122    0.000539    0.216968    0.305883    0.262279    906.51    945.46    1.000
pi(C){all}      0.320799    0.000553    0.271287    0.365587    0.321433    766.66   1033.94    1.000
pi(G){all}      0.296338    0.000547    0.249027    0.340836    0.296156   1061.71   1100.42    1.000
pi(T){all}      0.119740    0.000274    0.088736    0.153414    0.118758    623.80    807.86    1.000
alpha{1,2}      0.108833    0.000752    0.062121    0.165628    0.106103   1249.72   1375.36    1.000
alpha{3}        2.167137    0.669027    0.897424    3.785750    2.036796   1351.95   1374.40    1.000
pinvar{all}     0.329113    0.007477    0.162861    0.494978    0.333377   1282.45   1317.93    1.000
------------------------------------------------------------------------------------------------------
* Convergence diagnostic (ESS = Estimated Sample Size); min and avg values
correspond to minimal and average ESS among runs.
ESS value below 100 may indicate that the parameter is undersampled.
+ Convergence diagnostic (PSRF = Potential Scale Reduction Factor; Gelman
and Rubin, 1992) should approach 1.0 as runs converge.


Setting sumt conformat to Simple



 --- CODEML SUMMARY

Model 1: NearlyNeutral	-947.477906
Model 2: PositiveSelection	-947.477906
Model 0: one-ratio	-954.749766
Model 3: discrete	-944.892316
Model 7: beta	-944.940117
Model 8: beta&w>1	-944.940556


Model 0 vs 1	14.543720000000121

Model 2 vs 1	0.0

Model 8 vs 7	8.780000000569999E-4