--- EXPERIMENT NOTES




 --- EXPERIMENT PROPERTIES

#Sat Nov 12 04:38:38 WET 2016
codeml.models=0 1 2 3 7 8
mrbayes.mpich=
mrbayes.ngen=1000000
tcoffee.alignMethod=CLUSTALW2
tcoffee.params=
tcoffee.maxSeqs=0
codeml.bin=codeml
mrbayes.tburnin=2500
codeml.dir=
input.sequences=
mrbayes.pburnin=2500
mrbayes.bin=mb_adops
tcoffee.bin=t_coffee_ADOPS
mrbayes.dir=/usr/bin/
tcoffee.dir=
tcoffee.minScore=3
input.fasta=/opt/ADOPS/200/CG9485-PC/input.fasta
input.names=
mrbayes.params=
codeml.params=



 --- PSRF SUMMARY

      Estimated marginal likelihoods for runs sampled in files
"/opt/ADOPS/200/CG9485-PC/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run1.p" and "/opt/ADOPS/200/CG9485-PC/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run2.p":
(Use the harmonic mean for Bayes factor comparisons of models)

(Values are saved to the file /opt/ADOPS/200/CG9485-PC/batch/allfiles/mrbayes/input.fasta.fasta.mrb.lstat)

Run   Arithmetic mean   Harmonic mean
--------------------------------------
1     -18464.21        -18483.73
2     -18464.80        -18478.54
--------------------------------------
TOTAL   -18464.46        -18483.04
--------------------------------------


Model parameter summaries over the runs sampled in files
"/opt/ADOPS/200/CG9485-PC/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run1.p" and "/opt/ADOPS/200/CG9485-PC/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run2.p":
Summaries are based on a total of 3002 samples from 2 runs.
Each run produced 2001 samples of which 1501 samples were included.
Parameter summaries saved to file "/opt/ADOPS/200/CG9485-PC/batch/allfiles/mrbayes/input.fasta.fasta.mrb.pstat".

95% HPD Interval
--------------------
Parameter         Mean      Variance     Lower       Upper       Median    min ESS*  avg ESS    PSRF+
------------------------------------------------------------------------------------------------------
TL{all}         1.439974    0.002345    1.344708    1.532492    1.439998   1114.81   1221.84    1.000
r(A<->C){all}   0.096319    0.000055    0.081899    0.110355    0.096170   1056.40   1125.30    1.000
r(A<->G){all}   0.278861    0.000174    0.252324    0.303120    0.279054    820.99    887.66    1.000
r(A<->T){all}   0.119364    0.000108    0.099993    0.140327    0.119168    951.13   1010.84    1.000
r(C<->G){all}   0.044720    0.000019    0.035649    0.052945    0.044655    976.40   1057.48    1.000
r(C<->T){all}   0.383394    0.000213    0.354973    0.412469    0.383476    805.79    943.45    1.000
r(G<->T){all}   0.077343    0.000047    0.064709    0.091147    0.077116    995.29   1000.08    1.000
pi(A){all}      0.217330    0.000031    0.206576    0.228133    0.217411    860.41    933.59    1.000
pi(C){all}      0.290305    0.000035    0.278023    0.301203    0.290284   1038.25   1112.38    1.000
pi(G){all}      0.277010    0.000037    0.264839    0.288358    0.277079   1076.51   1093.98    1.001
pi(T){all}      0.215356    0.000028    0.204624    0.225619    0.215334    887.02   1023.10    1.000
alpha{1,2}      0.128926    0.000032    0.118160    0.139930    0.128887   1288.96   1306.90    1.000
alpha{3}        6.315121    1.231391    4.425888    8.590092    6.214561   1248.54   1338.93    1.000
pinvar{all}     0.315301    0.000302    0.282735    0.349774    0.315410   1126.96   1241.37    1.000
------------------------------------------------------------------------------------------------------
* Convergence diagnostic (ESS = Estimated Sample Size); min and avg values
correspond to minimal and average ESS among runs.
ESS value below 100 may indicate that the parameter is undersampled.
+ Convergence diagnostic (PSRF = Potential Scale Reduction Factor; Gelman
and Rubin, 1992) should approach 1.0 as runs converge.


Setting sumt conformat to Simple



 --- CODEML SUMMARY

Model 1: NearlyNeutral	-17342.254258
Model 2: PositiveSelection	-17342.254258
Model 0: one-ratio	-17479.385831
Model 3: discrete	-17274.531656
Model 7: beta	-17276.251085
Model 8: beta&w>1	-17275.432899


Model 0 vs 1	274.2631459999975

Model 2 vs 1	0.0

Model 8 vs 7	1.636372000000847