--- EXPERIMENT NOTES




 --- EXPERIMENT PROPERTIES

#Fri Nov 25 21:21:20 WET 2016
codeml.models=0 1 2 3 7 8
mrbayes.mpich=
mrbayes.ngen=1000000
tcoffee.alignMethod=CLUSTALW2
tcoffee.params=
tcoffee.maxSeqs=0
codeml.bin=codeml
mrbayes.tburnin=2500
codeml.dir=
input.sequences=
mrbayes.pburnin=2500
mrbayes.bin=mb_adops
tcoffee.bin=t_coffee_ADOPS
mrbayes.dir=/usr/bin/
tcoffee.dir=
tcoffee.minScore=3
input.fasta=/opt/ADOPS/1/5PtaseI-PC/input.fasta
input.names=
mrbayes.params=
codeml.params=



 --- PSRF SUMMARY

      Estimated marginal likelihoods for runs sampled in files
"/opt/ADOPS/1/5PtaseI-PC/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run1.p" and "/opt/ADOPS/1/5PtaseI-PC/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run2.p":
(Use the harmonic mean for Bayes factor comparisons of models)

(Values are saved to the file /opt/ADOPS/1/5PtaseI-PC/batch/allfiles/mrbayes/input.fasta.fasta.mrb.lstat)

Run   Arithmetic mean   Harmonic mean
--------------------------------------
1      -8284.68         -8298.77
2      -8284.51         -8299.80
--------------------------------------
TOTAL    -8284.59         -8299.41
--------------------------------------


Model parameter summaries over the runs sampled in files
"/opt/ADOPS/1/5PtaseI-PC/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run1.p" and "/opt/ADOPS/1/5PtaseI-PC/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run2.p":
Summaries are based on a total of 3002 samples from 2 runs.
Each run produced 2001 samples of which 1501 samples were included.
Parameter summaries saved to file "/opt/ADOPS/1/5PtaseI-PC/batch/allfiles/mrbayes/input.fasta.fasta.mrb.pstat".

95% HPD Interval
--------------------
Parameter         Mean      Variance     Lower       Upper       Median    min ESS*  avg ESS    PSRF+
------------------------------------------------------------------------------------------------------
TL{all}         0.968162    0.003112    0.867818    1.083542    0.967401   1308.78   1404.89    1.000
r(A<->C){all}   0.099686    0.000116    0.081406    0.122951    0.099177   1210.23   1222.68    1.000
r(A<->G){all}   0.268458    0.000426    0.230143    0.309299    0.268389    706.56    891.60    1.000
r(A<->T){all}   0.091114    0.000129    0.069036    0.113284    0.090581    786.80    798.83    1.000
r(C<->G){all}   0.096981    0.000134    0.075595    0.119950    0.096691    901.20    914.74    1.000
r(C<->T){all}   0.378941    0.000524    0.336056    0.425919    0.378619    768.32    853.43    1.001
r(G<->T){all}   0.064819    0.000110    0.044961    0.085004    0.064389    924.58   1180.20    1.001
pi(A){all}      0.283036    0.000083    0.265077    0.300604    0.283254   1191.74   1256.31    1.000
pi(C){all}      0.257115    0.000076    0.239213    0.273307    0.257200   1017.34   1136.05    1.002
pi(G){all}      0.227367    0.000071    0.210490    0.243386    0.227263   1036.11   1048.13    1.000
pi(T){all}      0.232482    0.000074    0.216235    0.249714    0.232278    837.05   1001.19    1.001
alpha{1,2}      0.219545    0.000490    0.177272    0.263333    0.217912   1226.54   1254.63    1.000
alpha{3}        2.757456    0.489018    1.531467    4.204025    2.660422   1287.61   1338.22    1.000
pinvar{all}     0.366366    0.001251    0.294696    0.430313    0.368564   1228.67   1245.91    1.000
------------------------------------------------------------------------------------------------------
* Convergence diagnostic (ESS = Estimated Sample Size); min and avg values
correspond to minimal and average ESS among runs.
ESS value below 100 may indicate that the parameter is undersampled.
+ Convergence diagnostic (PSRF = Potential Scale Reduction Factor; Gelman
and Rubin, 1992) should approach 1.0 as runs converge.


Setting sumt conformat to Simple



 --- CODEML SUMMARY

Model 1: NearlyNeutral	-7464.802884
Model 2: PositiveSelection	-7464.802933
Model 0: one-ratio	-7578.010556
Model 3: discrete	-7450.063675
Model 7: beta	-7450.234033
Model 8: beta&w>1	-7450.234114


Model 0 vs 1	226.4153440000009

Model 2 vs 1	9.800000043469481E-5

Model 8 vs 7	1.6200000027311035E-4