--- EXPERIMENT NOTES




 --- EXPERIMENT PROPERTIES

#Fri Nov 25 15:15:29 WET 2016
codeml.models=0 1 2 3 7 8
mrbayes.mpich=
mrbayes.ngen=1000000
tcoffee.alignMethod=CLUSTALW2
tcoffee.params=
tcoffee.maxSeqs=0
codeml.bin=codeml
mrbayes.tburnin=2500
codeml.dir=
input.sequences=
mrbayes.pburnin=2500
mrbayes.bin=mb_adops
tcoffee.bin=t_coffee_ADOPS
mrbayes.dir=/usr/bin/
tcoffee.dir=
tcoffee.minScore=3
input.fasta=/opt/ADOPS/1/14-3-3zeta-PK/input.fasta
input.names=
mrbayes.params=
codeml.params=



 --- PSRF SUMMARY

      Estimated marginal likelihoods for runs sampled in files
"/opt/ADOPS/1/14-3-3zeta-PK/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run1.p" and "/opt/ADOPS/1/14-3-3zeta-PK/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run2.p":
(Use the harmonic mean for Bayes factor comparisons of models)

(Values are saved to the file /opt/ADOPS/1/14-3-3zeta-PK/batch/allfiles/mrbayes/input.fasta.fasta.mrb.lstat)

Run   Arithmetic mean   Harmonic mean
--------------------------------------
1      -1340.45         -1378.43
2      -1341.44         -1382.88
--------------------------------------
TOTAL    -1340.83         -1382.19
--------------------------------------


Model parameter summaries over the runs sampled in files
"/opt/ADOPS/1/14-3-3zeta-PK/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run1.p" and "/opt/ADOPS/1/14-3-3zeta-PK/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run2.p":
Summaries are based on a total of 3002 samples from 2 runs.
Each run produced 2001 samples of which 1501 samples were included.
Parameter summaries saved to file "/opt/ADOPS/1/14-3-3zeta-PK/batch/allfiles/mrbayes/input.fasta.fasta.mrb.pstat".

95% HPD Interval
--------------------
Parameter         Mean      Variance     Lower       Upper       Median    min ESS*  avg ESS    PSRF+
------------------------------------------------------------------------------------------------------
TL{all}         0.471711    0.063859    0.136821    0.983478    0.398510    801.80    816.60    1.002
r(A<->C){all}   0.069978    0.001603    0.003157    0.144533    0.062458    373.38    457.65    1.000
r(A<->G){all}   0.235400    0.015768    0.036986    0.487003    0.210911     91.65    141.13    1.004
r(A<->T){all}   0.068214    0.001666    0.002314    0.143659    0.061539    529.97    574.26    1.003
r(C<->G){all}   0.046793    0.000925    0.004307    0.111149    0.040739    556.36    596.22    1.000
r(C<->T){all}   0.562685    0.022441    0.274033    0.837872    0.566693    102.21    149.75    1.005
r(G<->T){all}   0.016930    0.000305    0.000019    0.052410    0.011032    618.63    650.99    1.000
pi(A){all}      0.280404    0.000256    0.249159    0.310324    0.280458   1057.32   1139.05    1.000
pi(C){all}      0.258927    0.000248    0.227280    0.288890    0.258744   1254.37   1272.37    1.000
pi(G){all}      0.260526    0.000236    0.231890    0.291584    0.260219    917.50   1058.24    1.000
pi(T){all}      0.200143    0.000212    0.169008    0.226582    0.200361    899.95   1077.76    1.000
alpha{1,2}      0.092961    0.000848    0.025787    0.152799    0.091089   1059.05   1105.64    1.001
alpha{3}        1.224562    0.431418    0.217476    2.446944    1.082673    985.67   1034.49    1.002
pinvar{all}     0.824929    0.001223    0.750923    0.884185    0.829828   1076.42   1119.47    1.000
------------------------------------------------------------------------------------------------------
* Convergence diagnostic (ESS = Estimated Sample Size); min and avg values
correspond to minimal and average ESS among runs.
ESS value below 100 may indicate that the parameter is undersampled.
+ Convergence diagnostic (PSRF = Potential Scale Reduction Factor; Gelman
and Rubin, 1992) should approach 1.0 as runs converge.


Setting sumt conformat to Simple



 --- CODEML SUMMARY

Model 1: NearlyNeutral	-1263.066771
Model 2: PositiveSelection	-1263.066771
Model 0: one-ratio	-1264.026193
Model 3: discrete	-1263.063085
Model 7: beta	-1263.3924
Model 8: beta&w>1	-1263.066768


Model 0 vs 1	1.9188439999998081

Model 2 vs 1	0.0

Model 8 vs 7	0.6512640000000829