--- EXPERIMENT NOTES




 --- EXPERIMENT PROPERTIES

#Thu Nov 10 12:29:17 WET 2016
codeml.models=0 1 2 3 7 8
mrbayes.mpich=
mrbayes.ngen=1000000
tcoffee.alignMethod=CLUSTALW2
tcoffee.params=
tcoffee.maxSeqs=0
codeml.bin=codeml
mrbayes.tburnin=2500
codeml.dir=
input.sequences=
mrbayes.pburnin=2500
mrbayes.bin=mb_adops
tcoffee.bin=t_coffee_ADOPS
mrbayes.dir=/usr/bin/
tcoffee.dir=
tcoffee.minScore=3
input.fasta=/opt/ADOPS/181/CG7083-PA/input.fasta
input.names=
mrbayes.params=
codeml.params=



 --- PSRF SUMMARY

      Estimated marginal likelihoods for runs sampled in files
"/opt/ADOPS/181/CG7083-PA/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run1.p" and "/opt/ADOPS/181/CG7083-PA/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run2.p":
(Use the harmonic mean for Bayes factor comparisons of models)

(Values are saved to the file /opt/ADOPS/181/CG7083-PA/batch/allfiles/mrbayes/input.fasta.fasta.mrb.lstat)

Run   Arithmetic mean   Harmonic mean
--------------------------------------
1      -5209.04         -5227.43
2      -5208.88         -5223.93
--------------------------------------
TOTAL    -5208.96         -5226.76
--------------------------------------


Model parameter summaries over the runs sampled in files
"/opt/ADOPS/181/CG7083-PA/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run1.p" and "/opt/ADOPS/181/CG7083-PA/batch/allfiles/mrbayes/input.fasta.fasta.mrb.run2.p":
Summaries are based on a total of 3002 samples from 2 runs.
Each run produced 2001 samples of which 1501 samples were included.
Parameter summaries saved to file "/opt/ADOPS/181/CG7083-PA/batch/allfiles/mrbayes/input.fasta.fasta.mrb.pstat".

95% HPD Interval
--------------------
Parameter         Mean      Variance     Lower       Upper       Median    min ESS*  avg ESS    PSRF+
------------------------------------------------------------------------------------------------------
TL{all}         1.702692    0.011701    1.493753    1.908819    1.698187   1177.90   1286.97    1.000
r(A<->C){all}   0.083008    0.000190    0.057570    0.110335    0.082458   1016.53   1022.05    1.000
r(A<->G){all}   0.255587    0.000618    0.205051    0.302150    0.254780    769.63    817.01    1.000
r(A<->T){all}   0.126897    0.000525    0.083678    0.172338    0.125318   1091.88   1140.00    1.000
r(C<->G){all}   0.040637    0.000059    0.026090    0.055873    0.040365    986.18   1022.87    1.001
r(C<->T){all}   0.413254    0.000850    0.355632    0.469911    0.412581    643.63    738.07    1.000
r(G<->T){all}   0.080617    0.000180    0.055062    0.107431    0.080126   1019.36   1100.24    1.000
pi(A){all}      0.205867    0.000113    0.185532    0.226821    0.205894    942.29   1005.29    1.000
pi(C){all}      0.315219    0.000139    0.291760    0.337726    0.315189   1206.79   1207.91    1.001
pi(G){all}      0.263560    0.000126    0.241722    0.285108    0.263421    971.30   1065.10    1.000
pi(T){all}      0.215353    0.000097    0.196484    0.234716    0.215109    956.67    978.45    1.002
alpha{1,2}      0.103333    0.000061    0.088273    0.118599    0.103078   1259.78   1338.73    1.000
alpha{3}        3.979536    0.818128    2.371988    5.788409    3.869927   1501.00   1501.00    1.001
pinvar{all}     0.256527    0.001133    0.189781    0.320693    0.257440   1358.34   1385.91    1.000
------------------------------------------------------------------------------------------------------
* Convergence diagnostic (ESS = Estimated Sample Size); min and avg values
correspond to minimal and average ESS among runs.
ESS value below 100 may indicate that the parameter is undersampled.
+ Convergence diagnostic (PSRF = Potential Scale Reduction Factor; Gelman
and Rubin, 1992) should approach 1.0 as runs converge.


Setting sumt conformat to Simple



 --- CODEML SUMMARY

Model 1: NearlyNeutral	-4801.915611
Model 2: PositiveSelection	-4801.915628
Model 0: one-ratio	-4812.778724
Model 3: discrete	-4784.669563
Model 7: beta	-4784.683497
Model 8: beta&w>1	-4784.686737


Model 0 vs 1	21.72622599999886

Model 2 vs 1	3.3999998777289875E-5

Model 8 vs 7	0.006480000000010477